
Network Programming Guide

Part Number: 800-3850-10

Revision A of 27 March, 1990

Trademarks

SunOS™, Sun Workstation®, as well as the word “Sun” followed by a numerical suffix, are trademarks

of Sun Microsystems, Incorporated.

ONC is a trademark of Sun Microsystems, Incorporated.

UNIX® and UNIX System V® are trademarks of Bell Laboratories.

All other products or services mentioned in this document are identified by the trademarks or service

marks of their respective companies or organizations.

Legal Notice to Users

The Network Information Service (NIS) was formerly known as Sun Yellow Pages. The functionality of

the two remains the same, only the name has changed. The name Yellow Pages™ is a registered trade-

mark in the United Kingdom of British Telecommunications pic and may not be used without permission.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any

means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an information

retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in

subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in

similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-

nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter-

faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,

which license also covers Sun’s licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232 4,745,407

4,679,014 4,435,792 4,719,569 4,550,368 in addition to foreign patents and applications pending.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the

Regents of the University of California. We acknowledge the following individuals and institutions for their role in

its development: The Regents of the University of California, the Electrical Engineering and Computer Sciences

Department at the Berkeley Campus of the University of California, and Other Contributors.

Contents

Chapter 1 Network Services 1

1.1. The Major Network Services 2

1.2. Network Programming Manual Overview 3

1.3. The Network File System (NFS) 4

Computing Environments 5

Example NFS usage 6

Example 1 : Mounting a Remote Filesystem 6

Example 2: Exporting a Filesystem 7

Example 3: Administering a Server Machine 8

NFS Architecture 8

Transparent Information Access 8

Different Machines and Operating Systems 8

Easily Extensible 8

Ease of Network Administration 9

Reliability 9

High Performance 9

The Sun NFS Implementation 10

The NFS Interface 1

2

The NFS and the Mount Protocol 12

Pathname Parsing
: 13

Export and Mount Lists 14

UNIX Mount Protocol Procedures 14

A Stateless Protocol 15

Note: Miscellaneous Network Operations 17

— iii
-

Contents— Continued

1.4. Remote File Sharing (RFS) 18

Advertise 18

Unadvertise 18

Remote Mounts 18

Resource Naming 19

RFS Security Features 19

Client Authentication 19

Client Authorization 19

User and Group Id Mapping 20

1.5. The Portmapper 21

Port Registration 21

1.6. The Network Information Service Database Service 22

What Is The Network Information Service? 23

Network Information Service Maps 23

Network Information Service Domains 23

Masters and Slaves 24

Naming 24

Data Storage 25

Servers 25

Clients 25

Default NIS Files 25

Hosts 26

Passwd 26

Others 26

Changing your passwd 26

1 .7. The Network Lock Manager 26

The Locking Protocol 29

1.8. The Network Status Monitor 30

PART ONE: Network Programming 31

Chapter 2 Introduction to Remote Procedure Calls 33

2.1. Overview 33

How it is useful 33

- iv -

Contents— Continued

Terminology 33

The RPC Model 34

2 .2 . Versions and Numbers 35

2 .3 . Portmap 36

2 .4 . Transports and Semantics 36

Transport Selection 36

2 .5 . External Data Representation 37

2.6. rpcinfo 37

2 .7 . Assigning Program Numbers 37

Chapter 3 rpcgen Programming Guide 41

3 . 1 . The rpcgen Protocol Compiler 41

Converting Local Procedures into Remote Procedures 42

An Advanced Example 47

Debugging Applications 52

The C-Preprocessor 52

rpcgen Programming Notes 53

Network Types 53

User-Provided Define Statements 53

Inetd Support 54

Dispatch Tables 54

Client Programming Notes 55

Timeout Changes 55

Client Authentication 56

Server Programming Notes 56

Handling Broadcast on the Server Side 56

Other Information Passed to Server Procedures 57

RPC Language 58

Definitions 58

Enumerations 58

Typedefs 59

Constants 59

Declarations 59

Contents— Continued

Structures 60

Unions 60

Programs 61

Special Cases 62

Chapter 4 Remote Procedure Call Programming Guide 65

4.1. Layers of RPC 65

Higher Layers ofRPC 66

Middle Layers ofRPC 67

Passing Arbitrary Data Types 69

Lower Layers of RPC 72

More on the Server Side 73

More on the Client Side 75

Memory Allocation with XDR 77

4.2. Raw RPC 78

4.3. Other RPC Features 80

Select on the Server Side 80

Broadcast RPC 81

Broadcast RPC Synopsis 82

Batching 82

Authentication 86

UNIX Authentication 86

DES Authentication 89

Using Inetd 92

4.4. More Examples 92

Versions on Server Side 92

Versions on Client Side 94

TCP 95

Callback Procedures 98

4.5. Futures 101

Chapter 5 External Data Representation: Sun Technical Notes 103

Justification 104

- vi-

Contents— Continued

A Canonical Standard 106

The XDR Library 107

5.1. XDR Library Primitives 109

Number Filters 109

Floating Point Filters 1 io

Enumeration Filters 1 1

1

No Data 1 1 \

Constructed Data Type Filters 1 1

1

Strings m
Byte Arrays 112

Arrays 113

Opaque Data 115

Fixed Sized Arrays 116

Discriminated Unions 116

Pointers 118

Non-filter Primitives 120

XDR Operation Directions 120

XDR Stream Access 120

Standard I/O Streams 120

Memory Streams 121

Record (TCP/IP) Streams 121

XDR Stream Implementation 123

The XDR Object 123

5.2. Advanced Topics 124

Linked Lists 124

PART TWO: Protocol Specifications 129

Chapter 6 External Data Representation Standard: Protocol

Specification 131

6.1. Status of this Standard 131

6.2. Introduction 131

Basic Block Size 131

6.3. XDR Data Types 132

- vii-

Contents— Continued

Integer 132

Unsigned Integer 132

Enumeration 133

Boolean 133

Hyper Integer and Unsigned Hyper Integer 1 33

Floating-point 133

Double-precision Floating-point 134

Fixed-length Opaque Data 135

Variable-length Opaque Data 135

String 136

Fixed-length Array 136

Variable-length Array 137

Structure 137

Discriminated Union 138

Void 138

Constant 139

Typedef 139

Optional-data 140

Areas for Future Enhancement 141

6.4. Discussion 141

Why a Language for Describing Data? 141

Why Only one Byte-Order for an XDR Unit? 141

Why does XDR use Big-Endian Byte-Order? 141

Why is the XDR Unit Four Bytes Wide? 141

Why must Variable-Length Data be Padded with Zeros? 142

Why is there No Explicit Data-Typing? 142

6.5. The XDR Language Specification 142

Notational Conventions 142

Lexical Notes 142

Syntax Information 143

Syntax Notes 144

6.6. An Example of an XDR Data Description 145

6.7. References 146

- viii -

Contents— Continued

Chapter 7 Remote Procedure Calls: Protocol Specification 147

7 . 1 . Status of this Memo 147

7 .2 . Introduction 147

Terminology 147

The RPC Model 147

Transports and Semantics 148

Binding and Rendezvous Independence 149

Authentication 149

7 .3 . RPC Protocol Requirements 149

Programs and Procedures 150

Authentication 150

Program Number Assignment 151

Other Uses of the RPC Protocol 151

Batching 152

Broadcast RPC 152

7 .4 . The RPC Message Protocol 152

7 .5 . Authentication Protocols 155

Null Authentication 155

UNIX Authentication 155

DES Authentication 156

Naming 156

DES Authentication Verifiers 156

Nicknames and Clock Synchronization 157

DES Authentication Protocol (in XDR language) 158

Diffie-Hellman Encryption 159

7 .6 . Record Marking Standard 160

7 .7 . The RPC Language 161

An Example Service Described in the RPC Language 161

The RPC Language Specification 162

Syntax Notes 162

7 .8 . Port Mapper Program Protocol 162

Port Mapper Protocol Specification (in RPC Language) 163

Port Mapper Operation 164

1 - IX -

Contents— Continued

7.9. References 165

Chapter 8 Network File System: Version 2 Protocol

Specification 168

8.1. Status of this Standard 168

8.2. Introduction 168

Remote Procedure Call 168

External Data Representation 168

Stateless Servers 169

8.3. NFS Protocol Definition 169

File System Model 169

RPC Information 170

Sizes ofXDR Structures 170

Basic Data Types 170

stat 171

ftype 172

fhandle 172

timeval 173

fattr 173

sattr 174

filename 174

path 174

attrstat 175

diropargs 175

diropres 175

Server Procedures 175

Do Nothing 176

Get File Attributes 176

Set File Attributes 176

Get Filesystem Root 177

Look Up File Name 177

Read From Symbolic Link 177

Read From File 177

Contents— Continued

Write to Cache 178

Write to File 178

Create File 178

Remove File 178

Rename File 179

Create Link to File 179

Create Symbolic Link 179

Create Directory 180

Remove Directory 180

Read From Directory 1 80

Get Filesystem Attributes 1 8

1

8.4. NFS Implementation Issues 181

Server/Client Relationship 182

Pathname Interpretation 1 82

Permission Issues 182

Setting RPC Parameters 183

8.5. Mount Protocol Definition 183

Introduction 183

RPC Information 184

Sizes ofXDR Structures 1 84

Basic Data Types 184

fhandle 184

fhstatus 184

dirpath 184

name 185

Server Procedures 1 85

Do Nothing 185

Add Mount Entry 1 85

Return Mount Entries 1 85

Remove Mount Entry 186

Remove All Mount Entries 186

Return Export List 186

PART THREE: Transport-Level Programming 187

- xi-

Contents— Continued

Chapter 9 Transport Level Interface Programming 189

9.1. Background 189

9.2. Document Organization 191

9.3. Overview of the Transport Interface 192

Modes of Service 192

Connection-Mode Service 193

Local Management 193

Connection Establishment 194

Data Transfer 196

Connection Release 196

Connectionless-Mode Service 197

State Transitions 197

9.4. Introduction to Connection-Mode Services 197

Local Management 198

The Client 199

The Server 201

Connection Establishment 204

The Client 204

Event Handling 205

The Server 206

Data Transfer 209

The Client 210

The Server 211

Connection Release 213

The Server 213

The Client 214

9.5. Introduction to Connectionless-Mode Service 215

Local Management 215

Data Transfer 217

Datagram Errors 219

9.6. A Read/Write Interface 219

write 221

read 221

- xii -

Contents— Continued

close 221

9.7. Advanced Topics 222

Asynchronous Execution Mode 222

Advanced Programming Example 223

9.8. State Transitions 229

Transport Interface States 229

Outgoing Events 229

Incoming Events 230

Transport User Actions 23

1

State Tables 23

1

9.9. Guidelines for Protocol Independence 233

9.10. Some Examples 234

Connection-Mode Client 235

Connection-Mode Server 236

Connectionless-Mode Transaction Server 239

Read/Write Client 241

Event-Driven Server 243

9.11. Glossary 248

Chapter 10 A Socket-Based Interprocess Communications

Tutorial 251

10.1. Goals 251

10.2. Processes 252

10.3. Pipes 253

10.4. Socketpairs 256

10.5. Domains and Protocols 258

10.6. Datagrams in the UNIX Domain 260

10.7. Datagrams in the Internet Domain 263

10.8. Connections 266

10.9. Reads, Writes, Recvs, etc 275

10.10. Choices 278

10.11. WhattodoNext 278

- xiii -

Contents— Continued

Chapter 11 An Advanced Socket-Based Interprocess

Communications Tutorial 279

11.1. Basics 280

Socket Types 280

Socket Creation 281

Binding Local Names 282

Connection Establishment 283

Data Transfer 285

Discarding Sockets 286

Connectionless Sockets 286

Input/Output Multiplexing 288

11.2. Library Routines 290

Host Names 291

Network Names 291

Protocol Names 292

Service Names 292

Miscellaneous 293

11.3. Client/Server Model 295

Servers 295

Clients 298

Connectionless Servers 299

11.4. Advanced Topics 302

Out Of Band Data 302

Non-Blocking Sockets 304

Interrupt Driven Socket I/O 304

Signals and Process Groups 305

Pseudo Terminals 306

Selecting Specific Protocols 308

Address Binding 309

Broadcasting and Determining Network Configuration 3 1

1

Socket Options 314

inetd 315

- xiv -

Contents— Continued

Chapter 12 Socket-Based IPC Implementation Notes 317

Overview 317

Goals 318

12.1. Memory, Addressing 318

Address Representation 3 1

8

Memory Management 319

12.2. Internal Layering 322

Socket Layer 323

Socket State 324

Socket Data Queues 325

Socket Connection Queuing 326

Protocol Layer(s) 326

Network-Interface Layer 328

12.3. Socket/Protocol Interface 331

12.4. Protocol to Protocol Interface 334

pr_output() 335

pr_input() 335

pr_ctlinput () 336

pr_ctloutput () 336

12.5. Protocol/Network-Interface Interface 337

Packet Transmission 337

Packet Reception 337

12.6. Gateways and Routing Issues 338

Routing Tables 338

Routing Table Interface 340

User Level Routing Policies 34

1

12.7. Raw Sockets 341

Control Blocks 341

Input Processing 342

Output Processing 343

12.8. Buffering, Congestion Control 343

Memory Management 343

Protocol Buffering Policies 343

- XV -

Contents— Continued

Queue Limiting 344

Packet Forwarding 344

12 .9 . Out of Band Data 344

12 . 10 . Acknowledgements 345

12 . 11 . References 345

Index 347

- xvi -

Tables

Table 1-1 MOUNT: Remote Procedures, Version 1 15

Table 2-1 Registered RPC Program Numbers 38

Table 4-1 RPC Service Library Routines 67

Table 9-1 Local Management Routines 194

Table 9-2 Connection Establishment Routines 195

Table 9-3 Connection Mode Data Transfer Routines 196

Table 9-4 Connection Release Routines 196

Table 9-5 Connectionless-mode Data Transfer Routines 197

Table 9-6 Transport Interface States 229

Table 9-7 Transport Interface Outgoing Events 230

Table 9-8 Transport Interface Incoming Events 231

Table 11-1 C Run-time Routines 293

Table 11-2 ruptime Output 299

- xvii -

Figures

Figure 1-1 An Example NFS Filesystem Hierarchy 7

Figure 1-2 Mount and NFS Servers 13

Figure 1-3 Typical Portmapping Sequence 22

Figure 1-4 Architecture of the NFS Locking Service 28

Figure 2-1 Network Communication with the Remote Procedure Call 35

Figure 9-1 OSI Reference Model 189

Figure 9-2 Transport Interface 192

Figure 9-3 Channel Between User and Provider 193

Figure 9-4 Transport Connection 195

Figure 9-5 Listening and Responding Transport Endpoints 209

Figure 9-6 Common Local Management State Table 232

Figure 9-7 Connectionless-Mode State Table 232

Figure 9-8 Connection-Mode State Table 233

Figure 10-1 Use of a Pipe 253

Figure 10-2 Sharing a Pipe between Parent and Child 255

Figure 10-3 Use of a Socketpair 256

Figure 10-4 Sharing a Socketpair between Parent and Child 257

Figure 10-5 Reading UNIX Domain Datagrams 260

Figure 10-6 Sending a UNIX Domain Datagrams 261

Figure 10-7 Reading Internet Domain Datagrams 263

Figure 10-8 Sending an Internet Domain Datagram 264

- xix -

Figures— Continued

Figure 10-9 Initiating an Internet Domain Stream Connection 266

Figure 10-10 Accepting an Internet Domain Stream Connection 268

Figure 10-11 Using select () to Check for Pending Connections 270

Figure 10-12 Establishing a Stream Connection 272

Figure 10-13 Initiating a UNIX Domain Stream Connection 272

Figure 10-14 Accepting a UNIX Domain Stream Connection 273

Figure 10-15 Varieties of Read and Write Commands 276

Figure 11-1 Remote Login Client Code 294

Figure 11-2 Remote Login Server 295

Figure 11-3 rwho Server 300

Figure 11-4 Flushing Terminal I/O on Receipt of Out Of Band Data 303

Figure 11-5 Use of Asynchronous Notification of I/O Requests 305

Figure 11-6 Use of the SIGCHLD Signal 306

Figure 11-7 Creation and Use of a Pseudo Terminal 307

-XX-

Network Services

This guide gives an overview of the network services available in the Sun 4.

1

release. To appreciate the design of these services, it’s necessary to see that

SunOS is structurally a network UNIX system, and is designed to evolve as net-

work technology changes.

SunOS originally diverged from the 4.2BSD UNIX system, a system that already

strained at the limits of the UNIX system’s original simplicity of design. It was
with 4.2BSD that many of the network services found in SunOS were first intro-

duced. Fortunately, the Berkeley designers found alternatives to wedging every-

thing into the kernel. They implemented network services by offloading certain

jobs to specialized daemons (server processes) working in close cooperation with

the kernel, rather than by adding all new code to the kernel itself. Though NFS is

primarily kernel based (using a daemon only to make system calls), SunOS has

continued this line of development. Its expanding domain of network services is

uniformly built upon a daemon (server) based architecture. Examples of server

daemons are the portmapper, the network naming service (NIS), the Remote
Execution Facility (REX), the Network Lock Manager, and the Status Monitor.

Terminology A machine that provides resources to the network is called a “server" , while a
machine that employs these resources is called a “client” . A machine may be

both a server and a client, and when NFS resources (files and directories) are at

issue, often is. A person logged in on a client machine is a “user” , while a pro-

gram or set ofprograms that run on a client is an “application". There is a dis-

tinction between the code implementing the operations ofafilesystem, (called

“filesystem operations") and the data making up the filesystem’ s structure and
contents (called “filesystem data”).

Network services are added to SunOS by means of server processes that are

based upon Sun’s RPC (Remote Procedure Call) mechanism. These servers are

executed on all machines that provide the service. Sun daemons differ

significantly from those that were inherited from Berkeley in that most of them
are based on RPC. As a consequence, they automatically benefit from the ser-

vices provided by RPC, and the External Data Representation (XDR) that it is

built upon— for example, the data portability provided by XDR and RPC’s
authentication system.

Anything built with RPC/XDR is automatically a network application, as is any-

thing that stores data in NFS files, even if it doesn’t use RPC directly. Further-

more, in so far as network applications can presume the functionality of other

• sun
XT microsystems

1 Revision A, of 27 March 1990

network applications and call upon their services, all network applications are

network services as well. The RPC/XDR environment then, is inherently exten-

sible. New network services can be easily added by building upon the founda-

tion already in place. In SunOS, then, network services are analogous to UNIX
commands— anyone can add one, and when they do they are effectively

extending the “system”.

NOTE The term Open Network Computing (ONC) is based on RPC utilities only (such

as REX, NIS, Lock Manager, and Status Monitor). The other network utilities

described here are not considered part of ONC.

1.1. The Major Network The Remote Procedure Call (RPC) facility is a library of procedures that provide

Services a means whereby one process (the caller process) can have another process (the

server process) execute a procedure call, as if the caller process had executed the

procedure call in its own address space (as in the local model of a procedure

call). Because the caller and the server are now two separate processes, they no

longer have to live on the same physical machine.

The External Data Representation (XDR)is a specification for the portable data

representation standard. RPC uses XDR to ensure that data is represented the

same on different computers, operating systems, and computer languages. In

SunOS 4.1 XDR is implemented through the socket interface, yet allows pro-

grammers to have a standardized access to sockets without being concerned

about the low-level details of socket-based IPC.

The Network File System (NFS), is an operating system-independent service

which allows users to mount directories, even root directories, across the net-

work, and then to treat those directories as if they were local. There is also an

option for a secure mount involving DES authentication of user and host—for

more information about it, see the Secure Networking Features chapter of Secu-

rity Features Guide.

portmapper is a system service upon which all other RPC-based services rely.

It’s a kind of registrar that keeps track of the correspondence between ports (logi-

cal communications channels) and services on a machine, and provides a stan-

dard way for a client to look up the port number of any RPC program supported

by the server. But in effect, only RPC programs use it.

Sun’s Network Information Service is a network service designed to ease the job

of administering large networks. NIS is a replicated, read-only, distributed data-

base service. Network file system clients use it to access network-wide data in a

manner that is entirely independent of the relative locations of the client and the

server. The NIS database typically provides password, group, network, and host

information.

As part of its System V compatibility program, Sun now supports System-V

(SVID) compatible advisory file and record locking for both local and NFS
mounted files. User programs simply issue lockf () and fcntl () system

calls to set and test file locks— these calls are then processed by Network Lock

Manager daemons, which maintain locks at the network level, even in the face of

multiple machine crashes.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 1 — Network Services 3

The lock-manager daemons are able to manage machine crashes because they are

based upon a general purpose Network Status Monitor. This monitor provides a

mechanism by which network applications can detect machine reboots and

trigger application-specific recovery mechanisms. The Lock Manager is there-

fore equipped with a flexible fault-tolerant recovery capability.

There are other network services— NTS and REX 1 are two obvious examples—
and there are many others that are certainly services in the broad sense. This sec-

tion, however, is intended as an introduction, and it covers only the fundamental

services noted above.

1.2. Network Programming This Network Programming manual contains this Network Services overview and
Manual Overview then three major sections. In this overview the fundamental network services are

introduced without dealing with any protocol or implementation related issues.

PART ONE focuses on Sun’s network programming mechanisms. It includes:

The rpcgen Programming Guide, which introduces the rpcgen protocol

compiler and the C-like language that it uses to specify RPC applications

and define network data. In almost all cases, rpcgen will allow network

applications developers to avoid the use of lower-level RPC mechanisms.

The Remote Procedure Call Programming Guide is intended for program-

mers who wish to understand the lower-level RPC mechanisms. Readers are

assumed to be familiar with the C language and to have a working

knowledge of network theory.

The External Data Representation: Sun Technical Notes, which introduces

XDR and explains the justification for its “canonical” approach to network

data interchange. This section also gives Sun implementation information

and a few examples of advanced XDR usage.

PART TWO includes a number of number of protocol specifications. Both the

External Data Representation Protocol Specification and Remote Procedure Call

Specification have been published as a DARPA RFC (Request for Comments).
These protocol specifications include:

The External Data Representation Protocol Specification, which includes a

complete specification ofXDR data types, a discussion of the XDR approach

and a number of examples ofXDR usage. This specification is published as

DARPA RFC 1014.

The Remote Procedure Call Protocol Specification, which includes a discus-

sion of the RPC model, a detailed treatment of the RPC authentication facili-

ties and a complete specification of the portmapper Protocol. This

specification is published as DARPA RFC 1057.

1 These, however, are notfundamental network services, in the same sense as NFS. REX, for example,

cannot be guaranteed to be portable to a non-UNIX environment. This is true because the executability of a

program depends on many environmental factors— from machine architecture to operating-system services—
that are not universally available.

microsystems
Revision A, of 27 March 1990

4 Network Programming

The Network File System: Version 2 Protocol Specification, which includes

a complete specification of the Mount Protocol, as well as the NFS
specification itself. This specification is published as DARPA RFC 1094.

PART THREE documents Transport-Level Network Programming.

The first chapter, Transport Level Interface (TLI) Programming, describes

the TLI system interface for direct access to network mechanisms.

The rest of the chapters in this part document the Berkeley style, socket-Based

Inter-Process Communications mechanisms.

A Socket-Based Interprocess Communications Tutorial then introduces

socket-based IPC. It assumes little more that basic networking concepts on

the part of its reader, and includes many examples.

An Advanced Socket-Based Interprocess Communications Tutorial, which

takes up where the Tutorial leaves off.

Berkeley-Style IPC Implementation Notes, which describes the low-level

networking primitives (e.g. accept () , bind () and select ()) which

originated with the 4.2BSD UNIX system. This document is of interest pri-

marily to system programmers and aspiring UNIX gurus.

1.3. The Network File The Network File System is a facility for sharing files in a heterogeneous

System (NFS) environment of machines, operating systems, and networks. Sharing is accom-

plished by mounting a remote filesystem, then reading or writing files in place.

NFS was not designed by extending SunOS onto the network— such an

approach was considered unacceptable because it would mean that every com-

puter on the network would have to run SunOS. Instead, operating-system

independence was taken as an NFS design goal, along with machine indepen-

dence, crash recovery, transparent access and high performance. NFS was thus

designed as a collection of network services, and not as a distributed operating

system. As such, it is able to support distributed applications without restricting

the network to a single operating system.

Sun’s implementation ofNFS is integrated with the SunOS kernel for reasons of

efficiency, although such close integration is not strictly necessary. Other ven-

dors will make different choices, as dictated by their operating environments and

applications. And because of NFS’s open design, all of these applications will be

able to work together on a single network.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 1 — Network Services 5

Computing Environments The traditional timesharing environment looks like this:

The major problem with this environment is competition for CPU cycles. The
workstation environment solves that problem, but requires more disk drives. A
network environment looks like this:

Network

The goal of the NFS design was to make all disks available as needed. Indivi-

dual workstations have access to all information residing anywhere on the net-

work. Printers and supercomputers may also be available somewhere on the net-

work.

#sun
microsystems

Revision A, of 27 March 1990

6 Network Programming

Example NFS usage This section gives three examples of NFS usage.

Example 1 : Mounting a Remote Suppose your machine name is client, that you want to read some on-line

Filesystem manual pages, and that these pages are not available on your server machine,

named server, but are available on another machine named docserv. Mount
the directory containing the manuals as follows:

client# /usr/etc/mount docserv: /usr/man /usr/man

Note that you have to be superuser in order to do this. Now you can use the man
command whenever you want. Try running the mount -p command (on

client) after you’ve mounted the remote filesystem. Its output will look

something like this:

server: /roots/client / nf s rw, hard 0 0

server: /usr /usr nf s ro 0 0

server: /home/server /home/server nf s rw, bg 0 0

server: /usr/local /usr/local nf s ro, soft, bg 0 0

docserv: /usr/man /usr/man nf s ro, soft, bg 0 0

You can remote mount not only filesystems, but also directory hierarchies inside

filesystems. In this example, /usr/man is not a filesystem mount point— it’s

just a subdirectory within the /usr filesystem. Here’s a diagram showing a few

key directories of the three machines involved in this example. Ellipses

represent machines, and NFS-mounted filesystems are shown boxed. There are

five such boxed directories, corresponding to the five lines shown in the

mount -p output above. The docserv: /usr/man directory is shown

mounted as the /usr/man directory on client, as it would be by the mount
command given above.

Revision A, of 27 March 1990

Chapter 1 — Network Services 7

Figure 1-1 An Example NFS Filesystem Hierarchy

Example 2: Exporting a Suppose that you and a colleague need to work together on a programming pro-

Filesystem ject. The source code is on your machine, in the directory /usr/pro j. It

doesn’t matter whether your workstation is a diskless node or has a local disk.

Suppose that after creating the proper directory your colleague tried to remote

mount your directory. Unless you have explicitly exported the directory, your

colleague’s remote mount will fail with a “permission denied” message.

To export a directory, first become superuser and then edit the /etc/exports
file. If your colleague is on a machine named cohort, then you need to ran

exportfs (8) (after putting this line in /etc/exports):

/usr/proj -access=cohort

If no explicit access is given for a directory, then the system allows anyone on

the network to remote mount your directory. By giving explicit access to

cohort, you have denied access to others. (For more details about the

/etc/exports, see the exports (5) man page), mountd, the NFS mount
request server, (see The NFS Interface, below) reads the file /etc/xtab when-

ever it receives a request for a remote mount. The file /etc/xtab contains the

Revision A, of 27 March 1990

8 Network Programming

Example 3: Administering a

Server Machine

NFS Architecture

Transparent Information Access

Different Machines and

Operating Systems

Easily Extensible

entries for directories that are currently exported. Now your cohort can remote

mount the source directory by issuing this command:

cohort# /etc/mount client : /usr/pro j /usr/proj

This, however, isn’t the end of the story, since NFS requests are also checked at

request time. If you do nothing, the accesses that you’ve established in your

/etc/exports file will stay in effect, but you (and your programs) are free to

change them at any time with the exportfs command and system call.

Since both you and your colleague will be able to edit files on /usr/proj, it

would be best to use the sees source code control system for concurrency con-

trol.

System administrators must know how to set up the NFS server machine so that

client workstations can mount all the necessary filesystems. You export filesys-

tems (that is, make them available) by placing appropriate lines in the

/etc/exports file. Here is a sample /etc/exports file for a typical

server machine:

/

/exec
/usr
/home/server
/home/local . sun2
/home/local . sun3

-access=systems
-access=engineering: joebob: shilling
-access=engineering
-access=engineering
-access=engineering: athena
-access=engineering

Machine names or netgroups, such as staff (see netgroup (5)) may be

specified after the filesystem, in which case remote mounts are limited to

machines that are a member of this netgroup. For the complete syntax of the

/etc/exports file, see exports (5)

.

At any time, the system administrator

can see which filesystems are remote mounted by executing the showmount
command.

Users are able to get directly to the files they want without knowing the network

address of the data. To the user, all NFS-mounted filesystems look just like

private disks. There’s no apparent difference between reading or writing a file on

a local disk, and reading or writing a file on a disk in the next building. Informa-

tion on the network is truly distributed.

No single vendor can supply tools for all the work that needs to get done, so

appropriate services must be integrated on a network. NFS provides a flexible,

operating system-independent platform for such integration.

A distributed system must have an architecture that allows integration of new
software technologies without disturbing the extant software environment. Since

the NFS network-services approach does not depend on pushing the operating

system onto the network, but instead offers an extensible set of protocols for data

exchange, it supports the flexible integration of new software.

®sun
microsystems

Revision A, of 27 March 1990

Chapter 1 — Network Services 9

Ease ofNetwork Administration The administration of large networks can be complicated and time-consuming,

yet they should (ideally) be at least as easy to administer as a set of local filesys-

tems on a timesharing system. The UNIX system has a convenient set of mainte-

nance commands developed over the years, and the Network Information Ser-

vice, a NFS-based network database service, has allowed them to be adapted and

extended for the purpose of administering a network of machines. The NIS also

allows certain aspects of network administration to be centralized onto a small

number of file servers, e.g. only server disks must be backed up in networks of

diskless clients. An overview of the NIS facility is presented in the The Network

Information Service Database Service section of this manual.

The NIS interface is implemented using RPC and XDR, so it is available to non-

UNIX operating systems and non-Sun machines. NIS servers do not interpret

data, so it is easy for new databases to be added to the NIS service without modi-
fying the servers.

Reliability NFS’s reliability derives from the robustness of the 4.2BSD filesystem, from the

stateless NFS protocol2 , and from the daemon-based methodology by which net-

work services like file and record locking are provided. See The Network Lock
Manager for more details on locking. In addition, the file server protocol is

designed so that client workstations can continue to operate even when the server

crashes and reboots.

The major advantage of a stateless server is robustness in the face of client,

server, or network failures. Should a client fail, it is not necessary for a server

(or human administrator) to take any action to continue normal operation.

Should a server or the network fail, it is only necessary that clients continue to

attempt to complete NFS operations until the server or network gets fixed. This

robustness is especially important in a complex network of heterogeneous sys-

tems, many of which are not under the control of a professional operations staff,

and which may be running untested systems that are often rebooted without

warning.

High Performance The flexibility ofNFS allows configuration for a variety of cost and performance

trade-offs. For example, configuring servers with large, high-performance disks,

and clients with no disks, may yield better performance at lower cost than having

many machines with small, inexpensive disks. Furthermore, it is possible to dis-

tribute the filesystem data across many servers and get the added benefit of mul-

tiprocessing without losing transparency. In the case of read-only files, copies

can be kept on several servers to avoid bottlenecks.

Sun has also added several performance enhancements to NFS, such as “fast

paths” for key operations, asynchronous service of multiple requests, disk-block

caching
, and asynchronous read-ahead and write-behind. The fact that caching

and read-ahead occur on both client and server effectively increases the cache

size and read-ahead distance. Caching and read-ahead do not add state to the

server; nothing (except performance) is lost if cached information is thrown

2 The NFS protocol is stateless because each transaction stands on its own. The server doesn’t have to

remember anything— about clients or files — between transactions.

f#sun
microsystems

Revision A, of 27 March 1990

10 Network Programming

away. In the case of write-behind, both the client and server attempt to flush crit-

ical information to disk whenever necessary, to reduce the impact of an unantici-

pated failure; clients do not free write-behind blocks until the server confirms

that the data is written.

The Sun NFS Implementation In the Sim NFS implementation, there are three entities to be considered: the

operating system interface, the virtual file system (VFS) , interface, and the net-

work file system (NFS) interface. The UNIX operating system interface has been

preserved in the Sun implementation of NFS, thereby insuring compatibility for

existing applications. Applications will use read (2) and write (2) to access

NFS files just as the do to access local files.

The VFS is best seen as a layer that Sun has wrapped around the traditional

UNIX filesystem. This traditional filesystem is composed of directories and files,

each of which has a corresponding inode (index node), containing administra-

tive information about the file, such as location, size, ownership, permissions,

and access times. Inodes are assigned unique numbers within a filesystem, but a

file on one filesystem could have the same number as a file on another filesystem.

This is a problem in a network environment, because remote filesystems need to

be mounted dynamically, and numbering conflicts would cause havoc. To solve

this problem, Sun designed the VFS, which is based on a data structure called a

vnode. In the VFS, files are guaranteed to have unique numerical designators,

even within a network. Vnodes cleanly separate filesystem operations from the

semantics of their implementation. Above the VFS interface, the operating sys-

tem deals in vnodes; below this interface, the filesystem may or may not imple-

ment inodes. The VFS interface can connect the operating system to a variety

of filesystems (for example, 4.2 BSD or MS-DOS). A local VFS connects to

filesystem data on a local device.

Revision A, of 27 March 1990

Chapter 1 — Network Services 1

1

The remote VFS defines and implements the NFS interface on the basis of the

RPC and XDR mechanisms. The figure below shows the flow of a request from

a client (at the top left) to a collection of filesystems.

In the case of access through a local VFS, requests are directed to filesystem data

on devices connected to the client machine. In the case of access through a

remote VFS, the request is passed through the RPC and XDR layers onto the net.

In the current implementation, Sun uses the UDP/IP protocols and the Ethernet.

On the server side, requests are passed through the RPC and XDR layers to an

NFS server; the server uses vnodes to access one of its local VFSs and service

the request. This path is retraced to return results.

Sun’s implementation ofNFS provides five types of transparency:

1. Filesystem Type: The vnode, in conjunction with one or more local VFSs
(and possibly remote VFSs) permits an operating system (hence client and

application) to interface transparently to a variety of filesystem types.

2. Filesystem Location: Since there is no differentiation between a local and a

remote VFS, the location of filesystem data is transparent.

3. Operating System Type: The RPC mechanism allows interconnection of a

variety of operating systems on the network, and makes the operating system

type of a remote server transparent.

4. Machine Type: The XDR definition facility allows a variety of machines to

communicate on the network and makes the machine type of a remote server

transparent.

#sun
microsystems

Revision A, of 27 March 1990

12 Network Programming

5. Network Type: RPC and XDR can be implemented for a variety of transport

protocols, thereby making the network type transparent.

Simpler NFS implementations are possible at the expense of some advantages of

the Sun version. In particular, a client (or server) may be added to the network

by implementing one side of the NFS interface. An advantage of the Sun imple-

mentation is that the client and server sides can be symmetrical; thus, it is possi-

ble for any machine to be client, server, or both. Users at client machines with

disks can arrange to share them over NFS without having to appeal to a system

administrator or configure a different system on their workstation.

The NFS Interface As mentioned in the preceding section, a major advantage ofNFS is the ability to

mix filesystems. In keeping with this, Sun encourages other vendors to develop

products to interface with Sun network services. The specifications for RPC and

XDR have been placed in the public domain, and Sun’s implementation ofRPC
and XDR is freely licensed, whic serves as a standard for anyone wishing to

develop applications for the network. Furthermore, the NFS interface itself is

open and can be used by anyone wishing protocol specifications to implement an

NFS client or server for the network.

The NFS and the Mount The NFS interface defines traditional filesystem operations for reading direc-

Protocol tories, creating and destroying files, reading and writing files, and reading and

setting file attributes. The interface is designed so that file operations address

files with an uninterpreted identifier called afilehandle, a starting byte address,

and a length in bytes. NFS never deals with pathnames, only with filehandles.

More precisely, NFS never interprets Given a filehandle for a directory, a client program can use NFS procedures to

take Da^^m^°araum^t^buuh'ev
get other filehandles md thereby navigate throughout the directories and files of a

are just strings to NFS.
’ filesystem. A client must, however, get its first filehandle for a filesystem by

using RPC to call the mount server. Mount will return a filehandle that grants

access to the filesystem. Figure 1-2 shows the interaction between a client pro-

gram, a mount server, and an NFS server. Note that the only interface between a

mount server and an NFS server is a common filehandle.

microsystems
Revision A, of 27 March 1990

Chapter 1 — Network Services 1

3

Pathname Parsing

Figure 1-2 Mount andNFS Servers

Legend: t Client sends pathname to mount server

2. Mount server returns corresponding filehandle

3- Client sends filehandle to NFS server

Although many operating systems have analogs to the hierarchical NFS directory

and file structure, the conventions used by operating systems to formulate path-

names vary considerably. To accommodate the many possible path naming con-

ventions, the mount procedure is not defined in the NFS protocol but in a

separate mount protocol. Actually the mount protocol is the same for any

Operating System. It is only the implementation that differs between systems.

The mount procedure in the UNIX mount protocol converts a UNIX pathname

into a filehandle. If local pathnames can be reasonably mapped to UNIX path-

names; an NFS server developer may wish to implement the UNIX mount proto-

col, even though the server runs on a different operating system. This approach

makes the server immediately usable by clients that use the UNIX protocol and

eliminates the need to develop a new mount command for UNIX-based clients.

Alternatively, a server developer can obtain a new remote program number from

Sun and define a new mount protocol. For example, the mount procedure in a

VMS Mount protocol would take a VMS file specification rather than a UNIX
pathname. Mount protocols are not mutually exclusive; a server could, for exam-

ple, support the UNIX protocol for UNIX clients and a Multics protocol for Mul-

tics clients. Both protocols would return filehandles defined by the NFS imple-

mentation on their server.

The mount protocols remove pathname parsing from the NFS protocol, so that a

single NFS protocol can work with multiple operating systems. This means that

Revision A, of 27 March 1990

14 Network Programming

Export and Mount Lists

UNIX Mount Protocol

Procedures

users and client programs need to know the details of a server’s path naming con-

ventions only when mounting a filesystem. Different server path naming con-

ventions therefore typically have little impact on users.

Because mounts are relatively infrequent operations, mount servers can be imple-

mented outside of operating system kernels without materially affecting overall

file system performance. Because user-level code is easier to write and far easier

to debug than kernel code, mount servers are fairly simple to put together.

Technically, a mount protocol needs to define only a mount procedure that

bootstraps the first filehandle for a filesystem. (By convention, a mount protocol

should also define a NULL procedure). However, adding other procedures can

simplify network management. As a convenience to clients, a mount protocol

might provide a procedure that returns a list of filesystems exported by a server.

Another useful item is a mount list, a list of clients and the pathnames they have
mounted from the server. The UNIX mount protocol defines a mount list and a

procedure called readmount () that returns the list. With the help of read-
mount () , an administrator can notify the clients of a server that is about to be
shut down.

Note that a mount list makes a mount server stateful. Recall, however, that the

business of a mount server is to translate pathnames into filehandles; the state

represented by a mount list does not affect a server’s ability to operate correctly.

Neither servers nor clients need take any action to update or rebuild a mount list

after a crash. Mount server users should regard the mount and export lists pro-

vided by a mount server as “accessories” that are usually, but not necessarily,

accurate.

The mount protocol consists of the six remote procedures listed in Table 1 -1 .

The mount ()
procedure transforms a UNIX pathname into a filehandle which

the client can then pass to the associated NFS server. The pathname passed to

the mount procedure usually refers to a directory, often the root directory of a

filesystem, but it can name a file instead. In addition to returning the filehandle,

mount adds the client’s host name and the pathname to its mount list. The
readmount ()

procedure returns the server’s mount list, unmount (

)

removes an entry from the server’s mount list and unmountall () removes all

of a client’s mount list entries. The readexport ()
procedure returns the

server’s export list.

microsystems
Revision A, of 27 March 1990

Chapter 1 — Network Services 15

A Stateless Protocol

Table 1-1 MOUNT: Remote Procedures, Version 1

Number Name Description

0 null Do nothing

1 mount Return filehandle for pathname

2 readmount Return mount list

3 unmount Remove mount list entry

4 unmountall Clear mount list

5 readexport Return export list

The NFS interface is defined so that a server can be stateless. This means that a

server does not have to remember from one transaction to the next anything

about its clients, transactions completed or files operated on. For example, there

is no open () operation, as this would imply state in the server; of course, the

UNIX interface uses an open () operation, but the information in the UNIX
operation is remembered by the client for use in later NFS operations.

An interesting problem occurs when a UNIX application unlinks an open file.

This is done to achieve the effect of a temporary file that is automatically

removed when the application terminates. If the file in question is served by

NFS, the call to unlink () will remove the file, since the server does not

remember that the file is open. Thus, subsequent operations on the file will fail.

In order to avoid state on the server, the client operating system detects the situa-

tion, renames the file rather than unlinking it, and unlinks the file when the appli-

cation terminates. In certain failure cases, this leaves unwanted “temporary” files

on the server; these files are removed as a part of periodic filesystem mainte-

nance.

Another example of the advantages gained by having the NFS interface to the

UNIX system without introducing state is the mount command. A UNIX client

ofNFS “builds” its view of the filesystem on its local devices using the mount
command or via automount; thus, it is natural for the UNIX client to initiate

its contact with NFS and build its view of the filesystem on the network with an

extended mount command. This mount command does not imply state in the

server, since it only acquires information for the client to establish contact with a

server. The mount command may be issued at any time, but is typically exe-

cuted as a part of client initialization. The corresponding umount command is

only an informative message to the server, but it does change state in the client

by modifying its view of the filesystem on the network.

The major advantage of a stateless server is robustness in the face of client,

server or network failures. Should a client fail, it is not necessary for a server (or

human administrator) to take any action to continue normal operation. Should a

server or the network fail, it is only necessary that clients continue to attempt to

complete NFS operations until the server or network is fixed. This robustness is

especially important in a complex network of heterogeneous systems, many of

which are not under the control of a professional operations staff and may be

f#sun
\r microsystems

Revision A, of 27 March 1990

16 Network Programming

running untested systems and/or may be rebooted without warning.

An NFS server can be a client of another NFS server. However, it is not often

that a Sun server will not act as an intermediary between a client and another

server. Instead, a client may ask what remote mounts the server has and then

attempt to make similar remote mounts. The decision to disallow intermediary

servers is based on several factors. First, the existence of an intermediary will

impact the performance characteristics of the system; the potential performance

implications are so complex that it seems best to require direct communication
between a client and server. Second, the existence of an intermediary compli-

cates access control; it is much simpler to require a client and server to establish

direct agreements for service. Finally, disallowing intermediaries prevents

cycles in the service arrangements; Sun prefers this to detection or avoidance

schemes.

NFS currently implements UNIX file protection by making use of the authentica-

tion mechanisms built into RPC. This retains transparency for clients and appli-

cations that make use of UNIX file protection. Although the RPC definition

allows other authentication schemes, their use may have adverse effects on tran-

sparency.

Note that NFS, although very UNIX-like, is not a UNIX filesystem per se—
there are cases in which its behavior differs from that which would be expected

of the UNIX system proper:

The guaranteed APPEND_MODE is the most striking of these differences,

for it simply is not supported by NFS.

Note: Network access to devices

such as tape drivers is a good idea,

but it is best implemented as a
separate network service whose
requirement for stateful operation is

kept separate from network access
to files.

NFS does not support device operation over NFS. Support of special files is

not stateful because the device operations are carried out locally.

There are also minor incompatibilities between NFS and UNIX file-system

interfaces that are dictated by the very nature of remote NFS mounts. For
example, a local NFS daemon simply can’t tell that a remote disk partition is

full until the remote NFS daemon tells it so. Rather than wait for a positive

confirm on every write— a strategy that would impose unacceptable perfor-

mance problems— the local NFS code caches writes and returns to its

caller. If a remote error occurs, it gets reported back as soon as possible, but

not as immediately as would a local disk.

File locking and other inherently stateful functionality has been omitted from the

base NFS definition. In this way, Sun has been able to preserve a simple, general

interface that can be implemented by a wide variety of customers. File locking

has been provided as a NFS-compatible network service, and Sun is considering

doing the same for other features that inherently imply state and/or distributed

synchronization. These features, too, will be kept separate from the base NFS
definition. In any case, the open nature of the RPC and NFS interfaces means
that customers and users who need stateful or complex features can implement
them “beside” NFS.

f#sun
microsystems

Revision A, of 27 March 1990

Chapter 1 — Network Services 17

Note: Miscellaneous Network Sun supports a small number of miscellaneous networking operations that are

Operations useful for temporary inter-host connections, isolated file transfers, and access to

non-UNIX systems (e.g. VMS machines on the Internet). These operations

include rep, rlogin, rsh, ftp, telnet, and tftp.

rep is a remote copy utility program that uses “BSD networking facilities”

to copy files from one machine to another. The rep user supplies the path

name of a file on a remote machine, and receives a stream of bytes in return.

Access control is based on the client’s login name and host name.

The major problem with rep is that it’s not transparent to the user, who
winds up with a redundant copy of the transferred file. With NFS, by con-

trast, only one copy of the file is necessary. Another problem is that rep
does nothing but copy files. To use it as a model for additional network ser-

vices would be to introduce a remote command for every regular command:

for example, rdif f to perform differential file comparisons across

machines. By providing for the sharing of filesystems, NFS makes this

unnecessary.

rep is useful for NFS servers that you have login access to but not NFS access.

Files can copied back and forth, yet you don’t need any filesystem mounted.

rlogin allows the user to log into a remote machine, directly accessing

both its processor and its mounted file systems. It remains useful in NFS-

based networks because, with it, users can directly execute commands on

remote machines over the network.

rsh allows the user to execute a command on a remote machine. If no com-

mand is specified, rsh is equivalent to rlogin. Unlike the REX-based on

command, rsh does not copy the users local environment to the remote

machine before executing the command. This can be a benefit in situations

where exporting your local environment might cause problems.

o ftp is very much like rep, in that it supports file copying between

machines. However, ftp is more general that rep, and is not restricted to

copies between two UNIX systems.

telnet communicates with another host using the TELNET protocol. It

isn’t used much because rlogin is the standard mechanism for local inter-

host communication. But like ftp, telnet is useful for non-Unix sys-

tems.

t ftp is like ftp, expect that it is simpler and less reliable. This is because

t ftp’s transfer protocol is very simple; it is less robust that ftp’s protocol,

and offers fewer options, tftp is also used as part of the diskless NFS
booting procedure (i.e. netdisk).

Revision A, of 27 March 1990

1 8 Network Programming

1.4. Remote File Sharing Remote File Sharing (RFS) provides a means of viewing files that physically

(RFS) reside on remote machines as if they were on the local machine. Remote files are

named using the same conventions as for local files, and all operations on remote

files work the same as they do on local files. Like NFS, RFS allows application

programs to transparently share files across the network.

NFS, however, is stateless, transactions are independent of each other, and thus

no recovery is required when a server or client goes down. RFS, in contrast, sup-

ports all UNIX semantics as defined by AT&T. Consequently, it saves state

across transactions, and must recover when a server or client goes down.

RFS is used in much the same way as NFS. For both, the user accesses remote
files by mounting directories which are made available across the network by
server processes running on remote machines. The details do vary, though.

Machines using RFS make selected directories available for sharing by advertis-

ing them. Correspondingly, machines are able to augment their own file trees

with the advertised files from other machines. This augmentation is performed

by means of a remote mount, which is a direct extension of the standard mount
operation. Once remote directories have been mounted on the local filesystem,

they are functionally part of that filesystem and are accessed in the same way as

local directories.

Advertise To allow other machines to access a directory, its owner must advertise it by
using the adv (8) command. Once advertised, the directory and all files con-

tained in its subtree are available for sharing by any authorized machine.

Unadvertise A directory can be unadvertised at any time with the unadv (8) command.
Unadvertising a directory has no effect on existing mounts of that directory, but

future mount requests will fail.

Remote Mounts RFS extends the mount (8) operation to include a remote mount. After a

machine has advertised a resource, another machine may remotely mount that

resource in its own file tree. For example, to advertise a directory named / f s 1,

the administrator of a server machine would type:

example% adv DATA /fsl

This makes the /fsl subtree available for sharing, and specifies that other

machines will use the name DATA to refer to it when they mount it. The name
DATA can be almost any name that would work as a file name as long as it does

not contain a period See below for the special meaning of the period.

Another machine (a client) gains access to the advertised subtree by mounting
the remote subtree on the local directory. The remote /fsl is mounted on the

local / fsl with the command

example% mount -d DATA /fsl

The -d option tells the mount (8) command that the resource being mounted is

remote.

There is no need for the structures of the client and server file trees to match in

any way, or for advertised subtrees to be mounted at the same level on the client

microsystems
Revision A, of 27 March 1990

Chapter 1 — Network Services 19

Resource Naming

RFS Security Features

Client Authentication

Client Authorization

as they occupy on the server. If the client had done the remote mount onto its

/usr directory, then its references to files under /usr would yield files in the

server subtree under / f s 1 . A client cannot get to parts of the server file tree that

are not within an advertised directory.

Resource naming is modeled after the DARPA domain naming convention,

which has a hierarchically structured name space. A domain in this usage is a

name space that may encompass a group of machines and a set of resources

advertised by that group of machines.

Resource names are made up of two components separated by a period For

example, isl.payroll might represent a resource called payroll in domain isl, and

isl.acctp might represent the machine acctp within the same domain. Whether a

name specifies a resource or a machine is determined by context; there is no syn-

tactic distinction. If a name is unqualified (i.e., if it contains no periods), the

associated domain may (in some cases) be inferred from the context.

A domain’s name space is maintained by a domain name server, which insures

uniqueness of names within the domain and provides a central location for stor-

ing information about the machines and advertised resources in the domain. The

adv (8) , unadv (8) , mount (8) , umount (8) ,
and nsquery (8

)

com-

mands use the domain name server as a data base for information about adver-

tised resources, such as their names and the servers that own them.

As described above, each resource is assigned a symbolic name when it is adver-

tised, and the resource is subsequently identified (e.g. with a mount (8) com-

mand issued on a client) using just the domain name and that symbolic name.

Because of this symbolic naming of resources, remote users of resources need

not know the actual position of the resources within the server’s file tree, nor

even what server within the domain is offering the resource. This location

independence simplifies references to resources, and allows for the transparent

migration of resources among the machines within a domain (for example, for

balancing the load among a set of server machines).

RFS contains three security features— client authentication, client authorization,

and user and group id mapping.

This feature associates a password with a client machine so that the identity of a

prospective client can be checked before a mount request is serviced. Entry and

update of passwords is discussed in the rfadmin (8) , rfstart (8) , and

rfpasswd(8) commands.

RFS provides a means of selectively advertising directories through the adv (8

)

command. For example, if you want to advertise /usr/pr ivate, but only

want to authorize machines machl and mach2 to mount it, you would issue the

command:

example% adv PRIVATE /usr/private machl mach2

Without such a list of machines, the adv (8) command puts no restrictions on

availability.

microsystems
Revision A, of 27 March 1990

20 Network Programming

One may also choose to advertise a directory read-only by using the -r option.

Here, a remote mount will only succeed if the mount command also includes the

-r option.

User and Group Id Mapping Whenever a user accesses a remote file, that user’s permissions must be checked
as part of the normal processing of the request (for example, an “open to write” is

only valid if the user making the request has write permissions on the file).

When accessing a file across two machines, there is no guarantee that the user
and group ids on the local machine have the same meaning on the other machine.

Some machines handle this problem by requiring the same numeric ids across

machines and expecting the administrators to make sure that the /etc/passwd
and /etc/group files are identical across all machines (at least the entries for

all users that access remote files). This approach is conceptually simple, but it is

not always feasible in practice, especially in large or already established environ-
ments.

RFS, therefore, provides a range of id mapping options through the idload (8

)

command. Id mapping is done by a server machine on all incoming requests, as

well as in reporting file ownership ids in response to a request from a client

machine (e.g. a stat (2) or fstat (2)). A client machine maps ids in order

to determine the effective user or group id to use in executing a program that is

stored on a server and is “set user id” or “set group id”.

On each machine, mapping can be set globally, for all remote machines, or on a

per-machine basis. All mapping is based on one of two default cases:

Id This case maps all incoming ids to id, which means that remote users will

have the permissions associated with id in accessing a server’s files. This
mapping is the default if no other mapping is specified.

Transparent

This is a null mapping; remote user and group ids are used locally without
change.

These base mappings are augmented by two additional capabilities:

Exclude

This capability excludes selected ids from the default mapping by mapping
them to an otherwise unused id. This capability can be used together with
the transparent mapping capability to handle a network where the

/etc/passwd and /etc/group files were identical, but certain permis-
sions (e.g. root) are to be disallowed from remote machines.

Map
This capability provides arbitrary mapping between remote and local ids that

have different name or different numeric values. It can be used with the

transparent mapping to handle exceptions to “nearly” identical

/etc/passwd files.

Revision A, of 27 March 1990

Chapter 1 — Network Services 2

1

1.5. The Portmapper

Port Registration

Client programs need a way to find server programs; that is, they need a way to

look up and find the port numbers of server programs.3 Network transport ser-

vices do not provide such a service; they merely provide process-to-process mes-

sage transfer across a network. A message typically contains a transport address

which contains a network number, a host number, and a port number. (A port is a

logical communications channel in a host— by waiting on a port, a process

receives messages from the network).

How a process waits on a port varies from one operating system to the next, but

all provide mechanisms that suspend a process until a message arrives at a port.

Thus, messages are not sent across networks to receiving processes, but rather to

the ports at which receiving processes wait for messages. The portmapper proto-

col defines a network service that provides a standard way for clients to look up
the port number of any remote program supported by a server.

The portmapper on every host is associated with port number 111. The port-

mapper is one of the few network services that must have such a well-known and

dedicated port. Other network services can be assigned port numbers statically

or dynamically so long as they register their ports with their host’s portmapper.

For example, a server program based on Sun’s RPC library typically gets a port

number at run time by calling an RPC library procedure. Note that a given net-

work service can be associated with port number 1256 on one server and with

port number 885 on another; on a given host, a service can be associated with a

different port every time its server program is started. Delegating port-to-remote

program mapping to portmappers also automates port number administration.

The portmapper is started automatically whenever a machine is booted. As
shown in the Typical Portmapping Sequence figure, below, both server programs

and client programs call portmapper procedures.4 To find a remote program’s

port, a client sends an RPC call message to a server’s portmapper; if the remote

program is registered with the portmapper, it returns the relevant port number in

an RPC reply message. The client program can then send RPC call messages to

the remote program’s port.

NOTE The portmapperprovides an inherently stateful service because a portmap is a

set ofassociations between registrants and ports. Hence, all the RPC services

need to be reregistered if the portmap is restarted.

3 The naming of services by way of the port-number segment of their IP address is mandated by the Internet

protocols. Given this, clients face the problem of determining which ports are associated with the services they

wish to use.

4 Although client and server programs and client and server machines are usually distinct, they need not be.

A server program can also be a client program, as when an NFS server calls a portmapper server. Likewise,

when a client program directs a “remote” procedure call to its own machine, the machine acts as both client and

server.

sun
\r microsystems

Revision A, of 27 March 1990

22 Network Programming

Figure 1-3 Typical Portmapping Sequence

Client Machine Network Server Machine

Legend: t Server registers with portmapper

2. Client gets server’s port from portmapper

3. Client calls server

Note that, because every instance of a remote program can be mapped to a dif-

ferent port on every server, a client has no way to broadcast a remote procedure

call directly. However, the portmapper PMAPPROC_CALLIT procedure can be

used to broadcast a remote procedure call indirectly, since all portmappers are

associated with port number 111. One way for a client to find a server running a

remote program is to broadcast a call to PMAPPROC_CALLIT, asking it to call

procedure 0 of the desired remote program.

The Sun RPC library provides an interface to all portmapper procedures. Some
of the RPC library procedures also call portmappers automatically on behalf of

client and server programs.

1.6. The Network
Information Service

Database Service

Asun
w* microsystems

This chapter explains Sun’s network database mechanism, the Network Informa-

tion Service. NIS was previously known as "Yellow Pages", which is now a

trademark of British Telecom (refer to the trademark page at the front of this

manual). Although it is not intended exclusively for system administrators, it

leans towards their concerns. The Network Information Service permits pass-

word information and host addresses for an entire network to be held in a single

database, and, by so doing, greatly ease system and network administration.

Revision A, of 27 March 1990

Chapter 1 — Network Services 23

What Is The Network The Network Information Service constitutes a distributed network lookup ser-

Information Service? vice:

NIS is a lookup service: it maintains a set of databases for querying. Pro-

grams can ask for the value associated with a particular key, or all the keys,

in a database.

NIS is a network service: programs need not know the location of data, or

how it is stored. Instead, they use a network protocol to communicate with a

database server that knows those details.

a Network Information Service is distributed: databases are fully replicated on
several machines, known as NIS servers. Servers propagate updated data-

bases among themselves, ensuring consistency. At steady state, it doesn’t

matter which server answers a request; the answer is the same everywhere.

Network Information Service The Network Information Service serves information stored in NIS maps. Each
Maps map contains a set of keys and associated values. For example, the ho st s map

contains (as keys) all host names on a network, and (as values) the corresponding

Internet addresses. Each NIS map has a mapname, used by programs to access

data in the map. Programs must know the format of the data in the map. Most
maps are derived from ASCII files formerly found in /et c/pas swd,
/etc/group, /etc/hosts, /etc/networks, and other files in /etc.
The format of data in the NIS map is in most cases identical to the format of the

ASCII file. Maps are implemented by dbm(3X) files located in subdirectories

of /etc/yp on NIS server machines.

The relationship between a NIS map and the standard UNIX /etc file which it

relates to varies from map to map. Some files (e.g. /etc/hosts, are replaced

by their corresponding NIS maps, while some (e.g. / et c /pa s swd are merely

augmented.

Maps sometimes have nicknames. Although the ypcat command is a general

NIS database print program, it knows about the standard files in the NIS. Thus
ypcat hosts is translated into ypcat hosts . byaddr, since there is no
file called hosts in the NIS. The command ypcat -x furnishes a list of

expanded nicknames.

Network Information Service A NIS domain is a named set of NIS maps. Taken together, these maps define a

Domains distinct network namespace and locate a distinct area of administrative control.

NIS domains differ from both Internet domains and sendmail domains, which
define similar kinds of administrative loci in their respective (IP and electronic

mail) networks. A given host will typically fall within all three domains, but

these domains will not typically coincide. A NIS domain is implemented as a

directory in /etc/yp containing a set of maps.

You can determine your NIS domain by executing the domainname command.
A domain name is required for retrieving data from a NIS database. For instance,

if your NIS domain is sys 1 and you want to find the Internet address of host

dbserver, you must ask NIS for the value associated with the key dbserver
in the map hosts . byname within the NIS domain sysl. Each machine on
the network belongs to a default domain, which is set at boot time. Diskfull

Revision A, of 27 March 1990

24 Network Programming

Masters and Slaves

Naming

machines have their default domains set by a call to the domainname command
made from /etc/rc . local. Diskless clients have it set as the result of a con-

sultation with the bootparams (5) server.

A NIS server holds all the maps of a NIS domain in a subdirectory of / et c / yp,
named after the domain. In the example above, maps for the sy si domain

would be held in/etc/yp/sysl. A given host can contain maps for more
than one NIS domain.

NIS servers containing copies of the same databases can be spread throughout a

network. When an arbitrary machine wants information in one of the NIS data-

bases, it makes an RPC call to one of the NIS servers to get it. For any NIS map,

one NIS server is designated as the master— the only one whose database may
be modified. The other NIS servers are slaves, and they are automatically

updated from time to time to keep their information in sync with that of the mas-

ter.

All changes to a NIS map must be made on the machine which is the master NIS
server for that map. The changes will then propagate to the slaves. A newly

built map is timestamped internally when it’s created by makedbm. If you build

a NIS map on a slave server, you will temporarily break the NIS update algo-

rithm, and will have to get all versions in synch manually. Moral: after you

decide which server is the master, do all database updates and builds there, not

on slaves.

A given server may even be master with regard to one map, and slave with regard

to another. This can get confusing quickly. Thus, its recommended that a single

server be master for all maps created by ypinit in a single domain. Here we
are assuming this simple case, in which one server is the master for all maps in a

database.

Imagine a company with two different networks, each of which has its own
separate list of hosts and passwords. Within each network, user names, numeri-

cal user IDs, and host names are unique. However, there is duplication between

the two networks. If these two networks are ever connected, chaos could result.

The host name, returned by the hostname command and the gethost-
name () system call, may no longer uniquely identify a machine. Thus a new
command and system call, domainname and getdomainname () have been

added. In the example above, each of the two networks could be given a dif-

ferent domain name. However, it is always simpler to use a single domain when-

ever possible.

The relevance of domains to NIS is that data is stored in

/etc/yp/domainname. In particular, a machine can contain data for several

different domains.

microsystems
Revision A, of 27 March 1990

Chapter 1 — Network Services 25

Data Storage

Servers

Clients

Default NTS Files

The data in NIS maps is stored as dbm format databases. (See dbm (3X)). Thus
the database hosts .byname for the domain sysl is stored as

/etc/ yp/ sysl/hosts .byname .pag and

/ etc/ yp/ sysl/hosts .byname . dir. The command makedbm takes an

ASCII file such as /etc/hosts and converts it into a dbm file suitable for use

by the NIS. However, system administrators normally use the makefile in

/etc/yp to create new dbm files (read on for details). This makefile in turn

calls makedbm.

To become a server, a machine must contain the NIS databases, and must also be
running the NIS daemon ypserv. The ypinit command invokes this daemon
automatically. It also takes a flag saying whether you are creating a master or a

slave. When updating the master copy of a database, you can force the change to

be propagated to all the slaves with the yppush command. This pushes the

information out to all the slaves. Conversely, from a slave, the ypxfr command
gets the latest information from the master. The makefile in /etc/yp first exe-

cutes makedbm to make a new database, and then calls yppush to propagate

the change throughout the network.

Remember that a client machine does not access local copies of /etc files, but

rather makes an RPC call to a NIS server each time it needs information from a

NIS database. NIS clients on NIS servers also don’t access local copies of /etc
files. The ypbind daemon remembers the name of a server. When a client

boots, ypbind broadcasts asking for the name of the NIS server. Similarly,

ypbind broadcasts asking for the name of a new NIS server if the old server

crashes. The ypwhich command gives the name of the server that ypbind
currently points at.

Since client machines don’t have entire copies of files in the NIS, the commands
ypcat and ypmatch have been provided. As you might guess, ypcat
passwd is equivalent to cat / etc/passwd. To look for someone’s pass-

word entry, searching through the password file no longer suffices; you have to

issue one of the following commands

example! ypcat passwd
|
grep username

example! ypmatch username passwd

where you replace username with the login name you’re searching for.

By default, Sun workstations have a number of files from /etc in their NIS:

/etc/passwd, /etc/group, /etc/hosts, /etc/networks,
/etc/ services, /etc/protocols, and /etc/ethers. In addition,

there is the netgroup (5)

,

file, which defines network wide groups, and used
for permission checking when doing remote mounts, remote logins, and remote

shells.

In SunOS 4.0, the library routines getpwent () ,
getgrent () , and gethos-

tent () were rewritten to take advantage of the NIS. Thus, C programs that

call these library routines may have to be relinked in order to function correctly.

wsun
w' microsystems

Revision A, of 27 March 1990

26 Network Programming

Hosts

Passwd

Others

Changing your passwd

1.7. The Network Lock
Manager

The hosts file is stored as two different NIS maps. The first, hosts . byname,

is indexed by hostname. The second, hosts . byaddr, is indexed by Internet

address. Remember that this actually expands into four files, with suffixes

. pag, and . dir. When a user program calls the library routine gethost-
byname () , a single RPC call to a server retrieves the entry from the

hosts . byname file. Similarly, gethostbyaddr () retrieves the entry from

the hosts, byaddr file. If the NIS is not running (which is caused by com-

menting ypbind out of the /etc/rc file), then gethostbyname () will

read the /etc/hosts files, just as it always has.

Normally, the hosts file for the NIS will be the same as the /etc/hosts file on

the machine serving as a NIS master. In this case, the makefile in /et c/yp will

check to see if /etc/hosts is newer than the dbm file. If it is, it will use a

simple sed script to recreate hosts .byname and hosts .byaddr, run them

through makedbm and then call yppush See ypmake for details.

The passwd file is similar to the hosts file. It exists as two separate files,

passwd. byname and passwd. byuid. The ypcat program prints it, and

ypmake updates it. However, if getpwent always went directly to the NIS as

does gethostent, then everyone would be forced to have an identical pass-

word file. Consequently, getpwent reads the local /etc/passwd file, just as

it always did. But now it interprets “+” entries in the password file to mean,

interpolate entries from the NIS database. If you wrote a simple program using

getpwent to print out all the entries from your password file, it would print out

a virtual password file: rather than printing out + signs, it would print out what-

ever entries the local password file included from the NIS database.

Of the other files in /etc, /etc/group is treated like / etc/passwd, in that

getgrent () will only consult the NIS if explicitly told to do so by the

/etc/group file. The files /etc/networks, /etc/services,
/etc/protocols, /etc/ethers, and /etc/netgroup are treated like

/etc/hosts: for these files, the library routines go directly to the NIS, without

consulting the local files.

To change data in the NIS, the system administrator must log into the master

machine, and edit databases there; ypwhich -m tells where the master server

is. However, since changing a password is so commonly done, the yppasswd
command has been provided to change your NIS password. It has the same user

interface as the passwd command. This command will only work if the

yppasswdd server has been started up on the NIS master server machine.

SunOS includes an NFS-compatible Network Lock Manager (see the lockd(8C)

man page for more details) that supports the lockf () /fcntl () , System V
style of advisory file and record locking over the network. System V locks are

generally considered superior to 4.3BSD locks, implemented with the flock (

)

system call, for they provide record level, and not merely file level, locking.

Record level locking is essential for database systems. Sun does support

flock () for use on individual machines, but flock () is not intended to be

used across the network, flock () locks exclude only other processes on the

&sun
w* microsystems

Revision A, of 27 March 1990

Chapter 1 — Network Services 27

same machine. There is no interaction between flock() andlockf().

Locking prevents multiple processes from modifying the same file at the same
time, and allows cooperating processes to synchronize access to shared files. The
user interfaces with Sun’s network locking service by way of the standard

lockf (

)

system-call interface, and rarely requires any detailed knowledge of
how it works. The kernel maps user calls to flock (

)

and fcnt 1 (

)

into

RPC-based messages to the local lock manager (or, if the files in question are on
RFS-mounted filesystems, into calls to RFS). The fact that the file system may
be spread across multiple machines is really not a complication— until a crash

occurs.

All computers crash from time to time, and in an NFS environment, where multi-

ple machines can have access to the same file at the same time, the process of

recovering from a crash is necessarily more complex than in a non-network
environment. Furthermore, locking is inherently stateful. If a server crashes,

clients with locked files must be able to recover their locks. If a client crashes,

its servers must have the sense to hold the client’s locks while it recovers. And,
to preserve NFS’s overall transparency, the recovery of lost locks must not

require the intervention of the applications themselves. This is accomplished as

follows:

Basic file access operations, such as read and write, use a stateless protocol

(the NFS protocol). All interactions between NFS servers and clients are

atomic— the server doesn’t remember anything about its clients from one
interaction to the next. In the case of a server crash, client applications will

simply sleep until it comes back up and their NFS operations can complete.

Stateful services (those that require the server to maintain client information

from one transaction to the next) such as the locking service, are not part of

NFS per se. They are separate services that use the status monitor (see The
Network Status Monitor) to ensure that their implicit network state informa-

tion remains consistent with the real state of the network. There are two
specific state-related problems involved in providing locking in a network
context:

1) if the client has crashed, the lock can be held forever by the server

2) if the server has crashed, it loses its state (including all its lock infor-

mation) when it recovers.

The Network Lock Manager solves both of these problems by cooperating

with the Network Status Monitor to ensure that it’s notified of relevant

machine crashes. Its own protocol then allows it to recover the lock infor-

mation it needs when crashed machines recover.

The lock manager and the status monitor are both network-service daemons—
they run at user level, but they are essential to the kernel’s ability to provide fun-

damental network services, and they are therefore run on all network machines.

They are best seen as extensions to the kernel which, for reasons of space,

efficiency and organization, are implemented as daemons. Most application pro-

grams will request the network service through a system call to the kernel (like

lockf ()), though it is possible to interact with the service directly with RPC.

Revision A, of 27 March 1990

28 Network Programming

r

L

With lockf () the kernel uses RPC to call the daemon. The network daemons

communicate among themselves with RPC (see The Locking Protocol for some

details of the lock manager protocol). It should be noted that the daemon-based

approach to network services allows for tailoring by users who need customized

services.

The following figure depicts the overall architecture of the locking service.

Figure 1-4 Architecture of the NFS Locking Service

Machine A Machine B
1 r

J L

n

j

At each server site, a lock manager process accepts lock requests, made on behalf

of client processes by a remote lock manager, or on behalf of local processes by

the kernel. The client and server lock managers communicate with RPC calls.

Upon receiving a lock request for a machine that it doesn’t already hold a lock

on, the lock manager registers its interest in that machine with the local status

monitor, and waits for that monitor to notify it that the machine is up. The moni-

tor continues to watch the status of registered machines, and notifies the lock

manager is one of them is rebooted (after a crash). If the lock request is for a

local file, the lock manager tries to satisfy it, and communicates back to the

application along the appropriate RPC path.

The crash recovery procedure is very simple. If the failure of a client is detected,

the server releases the failed client’s locks, on the assumption that the client

application will request locks again as needed. If the recovery (and, by implica-

tion, the crash) of a server is detected, the client lock manager retransmits all

lock requests previously granted by the recovered server. This retransmitted

information is used by the server to reconstruct its locking state. See below for

more details.

Revision A, of 27 March 1990

Chapter 1 — Network Services 29

The Locking Protocol

The locking service recovers from failure in a stateless manner. Its state infor-

mation is carefully circumscribed within a pair of system daemons that are set up
for automatic, application-transparent crash recovery. If a server crashes, and
thus loses its state, it expects that its clients will be notified of the crash and send
it the information that it needs to reconstruct its state. The key in this approach is

the status monitor, which the lock manager uses to detect both client and server

failures.

The lock style implemented by the network lock manager is that specified in the

AT&T System V Interface Definition, (see the lockf (2) and fcntl (2) man
pages for details). There is no interaction between the lock manager’s locks and
flock () -style locks, which remain supported, but which should be used for

non-network applications only.

Locks are presently advisory only, on the (well supported) assumption that

cooperating processes can do whatever they wish without mandatory locks. (See
the fcntl (2) man page for more information about advisory locks).

There are four basic Lock Manager requests that are made by the kernel in

response to various ioctl () /fcntl () calls:

KLM_LOCK
Lock the specified record.

KLM_UNLOCK
Unlock the specified record.

KLM_TEST
Test if the specified record is locked.

KLM_CANCEL
Cancel an outstanding lock request.

Despite the fact that the network lock manager adheres to the

lockf () / fcntl () semantics, there are a few subtle points about its behavior

that deserve mention. These arise directly from the nature of the network:

The first and most important of these has to do with crashes. When an
NFS-client goes down, the lock managers on all of its servers are notified by
their status monitors, and they simply releases its locks, on the assumption
that it will request them again when it wants them. When a server crashes,

however, matters are different: the clients will wait for it to come back up,

and when it does, its lock manager will give the client lock managers a grace

period to submit lock reclaim requests, and during this period will accept

only reclaim requests. The client status monitors will notify their respective

lock managers when the server recovers. The default grace period is 45
seconds.

It is possible that, after a server crash, a client will not be able to recover a

lock that it had on a file on that server. This can happen for the simple rea-

son that another process may have beaten the recovering application process

to the lock. In this case the S IGLOST signal will be sent to the process (the

default action for this signal is to kill the application).

SJJLH Revision A, of 27 March 1990

30 Network Programming

The local lock manager does not reply to the kernel lock request until the

server lock manager has gotten back to it. Further, if the lock request is on a

server new to the local lock manager, the lock manager registers its interest

in that server with the local status monitor and waits for its reply. Thus, if

either the status monitor or the server’s lock manager are unavailable, the

reply to a lock request for remote data is delayed until it becomes available.

1.8. The Network Status The Network Status Monitor (see the statd(8C) man page for more details) was

Monitor introduced with the lock manager, which relies heavily on it to maintain the

inherently stateful locking service within the stateless NFS environment. How-
ever, the status monitor is very general, and can also be used to support other

kinds of stateful network services and applications. Normally, crash recovery is

one of the most difficult aspects of network application development, and

requires a major design and installation effort. The status monitor makes it more

or less routine.

It is anticipated that, in the future, new network services, some of them stateful,

will be introduced into the Sun system. These services will use the status moni-

tor to keep up with the state of the network and to cope with machine crashes.

The status monitor works by providing a general framework for collecting net-

work status information. Implemented as a daemon that runs on all network

machines, it implements a simple protocol which allows applications to easily

monitor the status of other machines. Its use improves overall robustness, and

avoids situations in which applications running of different machines (or even on

the same machine) come to disagree about the status of a site— a potentially

dangerous situation that can lead to inconsistencies in many applications.

Applications using the status monitor do so by registering with it the machines

that they are interested in. The monitor then tracks the status of those machines,

and when one of them crashes5 it notifies the interested applications to that

effect, and they then take whatever actions are necessary to reestablish a con-

sistent state.

There are several major advantages to this approach:

Only applications that use stateful services must pay the overhead— in time

and in code— of dealing with the status monitor.

The implementation of stateful network applications is eased, since the

status monitor shields application developers from the complexity of the net-

work.

5 Actually, when one of them recovers from a crash.

microsystems
Revision A, of 27 March 1990

PART ONE: Network Programming

Introduction to Remote Procedure Calls

2.1. Overview

How it is useful

Terminology

What are Remote Procedure Calls? Simply put, they are a high-level communi-
cations paradigm which allows network applications to be developed by way of
specialized kinds of procedure calls designed to hide the details of the underlying

networking mechanisms.

RPC implements a logical client to server communications system designed

specifically for the support of network applications. With RPC, the client makes
a procedure call which sends requests to the server as necessary. When these

requests arrive, the server calls a dispatch routine, performs whatever service is

requested, sends back the reply, and the procedure call returns to the client.

The net effect of programming with RPC is that programs are designed to run
within a client/server network model. Such programs use RPC mechanisms to

avoid the details of interfacing to the network, and provide network services to

their callers without even requiring that they be aware of the existence and func-

tion of the underlying network.

This mechanism solves the tedious issues of programming by making the calls

transparent. For example, a program can simply make a call to rnusers () , a

C routine which returns the number of users on a remote machine. The caller is

not explicitly aware of using RPC— they simply call a procedure, much like

making a system call to malloc ()

.

Even though this discussion only mentions the interface to C, Remote Procedure
Calls can be made from any language. Additionally even though this discussion

refers to RPC only as it is used to communicate between processes on different

machines, it also works for communication between different processes on the

same machine.

This chapter discusses servers, services, programs, procedures, clients, and ver-

sions. A server provides network services and a network service is a collection

of one or more remote programs. A remote program implements one or more
remote procedures; the procedures, their parameters, and results are documented
in the specific program’s protocol specification. Network clients initiate remote

procedure calls to services. A server may support more than one version of a

remote program in order to be forward compatible with changing protocols.

For example, a network file service may be composed of two programs. One
program may deal with high-level applications such as file system access control

and locking. The other may deal with low-level file 10 and have procedures like

#sun
microsystems

33 Revision A, of 27 March 1990

34 Network Programming

The RPC Model

"read" and "write". A client machine of the network file service would call the

procedures associated with the two programs of the service on behalf of some

user on the client machine.

The remote procedure call model is similar to the local procedure call model. In

the local case, the caller places arguments to a procedure in some well-specified

location (such as a result register). It then transfers control to the procedure, and

eventually gains back control. At that point, the results of the procedure are

extracted from the well-specified location, and the caller continues execution.

The remote procedure call is similar, in that one thread of control logically winds

through two processes—one is the caller’s process, the other is a server’s pro-

cess. That is, the caller process sends a call message to the server process and

waits (blocks) for a reply message. The call message contains the procedure’s

parameters, among other things. The reply message contains the procedure’s

results, among other things. Once the reply message is received, the results of

the procedure are extracted, and caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message.

When one arrives, the server process extracts the procedure’s parameters, com-

putes the results, sends a reply message, and then awaits the next call message.

Please refer to Figure 2-1.

Note that in this model, only one of the two processes is active at any given time.

The RPC protocol makes no restrictions on the concurrency model implemented,

and others are possible. For example, an implementation may choose to have

RPC calls be asynchronous, so that the client may do useful work while waiting

for the reply from the server. Another possibility is to have the server create a

task to process an incoming request, so that the server can be free to receive other

requests. For a more detailed discussion on the RPC protocol, see Chapter 7—
Remote Procedure Calls: Protocol Specification.

Revision A, of 27 March 1990

Chapter 2— Introduction to Remote Procedure Calls 35

Figure 2- 1 Network Communication with the Remote Procedure Call

Machine A

program

continues

\ f
RPC Call

service

daemon

l\fl OPninividcnin

1

invoke
i

i

i

service

i

i

i

f call

i

i

i

i

i

service

i

i

i

i

i _ Answer Return y
i

i

i

i

i

request

i

i

completed

i

return
reply

V

service

executes

In the above diagram, the details of the network transport are hidden within the

Remote Procedure Call. Note, however, that the RPC would not be very useful if

those details were entirely unavailable to user and programmers who required

access to them.

2.2. Versions and Numbers
Each RPC Procedure is uniquely defined by a program number and procedure
number. The program number specifies a group of related remote procedures,

each of which has a different procedure number. Each program also has a ver-

sion number, so when a minor change is made to a remote service (adding a new
procedure, for example), a new program number doesn’t have to be assigned.

For example, when you want to call a procedure to find the number of remote
users, you look up the appropriate program, version and procedure numbers in a

®sun
'X* mi/"'rncwclomcmicrosystems

Revision A, of 27 March 1990

36 Network Programming

2.3. Portmap

2.4. Transports and
Semantics

Transport Selection

manual, just as you look up the name of a memory allocator when you want to

allocate memory.

The portmap is the only network service that must have such a well-known

(dedicated) port. Other network services can be assigned port numbers statically

or dynamically so long as they register their ports with their host’s portmap.
The portmap is started automatically whenever a machine is booted. As part of

its initialization, a server program calls its host’s portmap to create a portmap

entry for its program and version number. To find a remote program’s port, a

client sends an RPC call message to a server’s portmap; if the remote program

is registered with the portmap, it returns the relevant port number in an RPC
reply message. The client program can then send RPC call messages to the

remote program’s port.

The RPC protocol is independent of transport protocols. That is, RPC does not

care how a message is passed from one process to another. The protocol deals

only with specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of relia-

bility and that the application must be aware of the type of transport protocol

underneath RPC. If it knows it is running on top of a reliable transport such as

TCP/IP[6], then most of the work is already done for it. On the other hand, if it

is running on top of an unreliable transport such as UDP/IP[7], it must implement

is own retransmission and time-out policy as the RPC layer does not provide this

service.

Because of transport independence, the RPC protocol does not attach specific

semantics to the remote procedures or their execution. Semantics can be inferred

from (but should be explicitly specified by) the underlying transport protocol.

For example, consider RPC running on top of an unreliable transport such as

UDP/IP. If an application retransmits RPC messages after short time-outs, the

only thing it can infer if it receives no reply is that the procedure was executed

zero or more times. If it does receive a reply, then it can infer that the procedure

was executed at least once.

On the other hand, if using a reliable transport such as TCP/IP, the application

can infer from a reply message that the procedure was executed exactly once, but

if it receives no reply message, it cannot assume the remote procedure was not

executed. Note that even if a connection-oriented protocol like TCP is used, an

application still needs time-outs and reconnection to handle server crashes.

Sun RPC is currently supported on both UDP/IP and TCP/IP transports. The

selection of the transport depends upon the requirements of the application. UDP
(connection less) may be the transport of choice if the application has all of the

following characteristics:

1. The procedures are idempotent. i.e. the same procedure can be executed

more than once without any harmful side-effects. For example, reading a

block of data is idempotent, while creating a file is a non-idempotent opera-

tion.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 2— Introduction to Remote Procedure Calls 37

2.5. External Data
Representation

2.6. rpcinfo

2.7. Assigning Program
Numbers

2. The size of both the arguments and results is smaller than the UDP packet

size (8 Kbytes for Sun UDP implementation).

3. The server is required to handle many (hundreds) of clients. Since the UDP
server does not keeps any state about the client, it can potentially handle

many clients. On the other hand, TCP server keeps state for each open client

connection and hence the number of clients is limited by the machine
resources.

TCP (connection oriented) may be the transport of choice if the application has

any of the following requirements and characteristics:

1. The application needs to maintain a high degree of reliability.

2. The procedures are non-idempotent and at-most-once semantics are

required.

3. The size of either the arguments or the results exceeds 8 Kbytes.

RPC presumes the existence of the external Data Representation (XDR), a stan-

dard for the machine-independent description and encoding of data. XDR is use-

ful for transferring data between different computer architectures, and has been
used to communicate data between such divers machines as the Sun Workstation,

VAX, IBM-PC, and Cray.

RPC can handle arbitrary data structures, regardless of different machines’ byte

orders or structure layout conventions, by always converting them to a network
standard called External Data Representation (XDR) before sending them over
the wire. The process of converting from a particular machine representation to

XDR format is called serializing, and the reverse process is called deserializing.

For a detailed discussion of XDR, see Chapter 6— External Data Representa-

tion Standard: Protocol Specification.

rpcinfo is a command that reports current RPC registration information

known to portmap (and can be used by administrators to delete registrations),

rpcinfo can be used to find all the RPC services registered on a specified host
and to report their port numbers and the transports for which they are registered.

It can also be used to call (ping) a specific version of a specific program on a

specific host using TCP or UDP transport, and to report whether the response was
received. For details, seethe rpcinfo (8C) manual pages.

Program numbers are assigned in groups of 0x20000000 according to the fol-

lowing chart:—
0x0 - Oxlfffffff Defined by Sun

0x20000000 - 0x3f f f f f f

f

Defined by user

0x40000000 - 0x5f f f f f f

f

Transient

0x60000000 - 0x7f f f f f f

f

Reserved

0x80000000 - 0x9f f f f f f

f

Reserved

OxaOOOOOOO - Oxbfffffff Reserved

OxcOOOOOOO - Oxdfffffff Reserved

0xe0000000
V

- Oxffffffff Reserved

J

microsystems
Revision A, of 27 March 1990

38 Network Programming

Table 2-1

Sun Microsystems administers the first group of numbers, which should be ident-

ical for all Sun customers. If a customer develops an application that might be of

general interest, that application should be given an assigned number in the first

range. The second group of numbers is reserved for specific customer applica-

tions. This range is intended primarily for debugging new programs. The third

group is reserved for applications that generate program numbers dynamically.

The final groups are reserved for future use, and should not be used.

To register a protocol specification, send a request by network mail to

rpc@ sun . com, or write to:

RPC Administrator

Sun Microsystems

2550 Garcia Ave.

Mountain View, CA 94043

Please include a compilable rpcgen "
. x" file describing your protocol. You

will be given a unique program number in return.

Some of the RPC program numbers can be found in /etc/rpc. Protocol

specifications of standard Sun RPC services can be found in the include files in

/usr/include/rpcsvc. These services, however, constitute only a small

subset of those which have been registered. A list of some of the registered pro-

grams is:

Registered RPC Program Numbers

RPC Number Program Description

100000 PMAPPROG portmap

100001 RSTATPROG remote stats

100002 RUSERSPROG remote users

100003 NFSPROG nfs

100004 YPPROG NIS

100005 MOUNTPROG mount daemon

100006 DBXPROG remote dbx

100007 YPBINDPROG NIS binder

100008 WALLPROG shutdown msg

100009 YPPASSWDPROG yppasswd server

100010 ETHERSTATPROG ether stats

100011 RQUOTAPROG disk quotas

100012 SPRAYPROG spray packets

100013 IBM3270PROG 3270 mapper

100014 IBMRJEPROG RJE mapper

100015 SELNSVCPROG selection service

100016 RDATABASEPROG remote database access

100017 REXECPROG remote execution

100018 ALICEPROG Alice Office Automation

100019 SCHEDPROG scheduling service

100020 LOCKPROG local lock manager

100021 NETLOCKPROG network lock manager

100022 X25PROG x.25 inr protocol

fsun
microsystems

Revision A, of 27 March 1990

Chapter 2— Introduction to Remote Procedure Calls 39

Table 2- 1 Registered RPC Program Numbers— Continued

RPC Number Program Description

100023 STATMON 1PROG status monitor 1

100024 STATMON2PROG status monitor 2

100025 SELNLIBPROG selection library

100026 BOOTPARAMPROG bootparameters service

100027 MAZEPROG mazewars game
100028 YPUPDATEPROG NIS update

100029 KEYSERVEPROG key server

100030 SECURECMDPROG secure login

100031 NETFWDIPROG nfs netforwarder init

100032 NETFWDTPROG nfs netforwarder trans

100033 SUNLINKMAP PROG sunlinkMAP
100034 NETMONPROG network monitor

100035 DBASEPROG lightweight database

100036 PWDAUTHPROG password authorization

100037 TFSPROG translucentfile svc

100038 NSEPROG nse server

100039 NSE_ACTIVATE PROG nse activate daemon
100043 SHOWHFD showfh

150001 PCNFSDPROG pc passwd authorization

200000 PYRAMIDLOCKINGPROG Pyramid-locking

200001 PYRAMIDSYS5 Pyramid-sysS

200002 CADDS_IMAGE CV caddsjmage

300001 ADT_RFLOCKPROG ADTfile locking

microsystems
Revision A, of 27 March 1990

40 Network Programming

microsystems
Revision A, of 27 March 1990

3

rpcgen Programming Guide

3.1. The rpcgen Protocol The details of programming applications to use Remote Procedure Calls can be

Compiler tedious. One of the more difficult areas is writing XDR routines to convert pro-

cedure arguments and results into their network format and vice-versa.

Fortunately, rpcgen (1) exists to help programmers write RPC applications

simply and directly, rpcgen does most of the dirty work, allowing program-

mers to debug the main features of their application, instead of requiring them to

spend most of their time on their network interface code.

rpcgen is a compiler. It accepts a remote program interface definition written

in a language, called RPC Language, which is similar to C. It produces a C
language output for RPC programs. This output includes skeleton versions of the

client routines, a server skeleton, XDR filter routines for both parameters and

results, a header file that contains common definitions and, optionally, dispatch

tables which the server can use to check authorizations and then invoke service

routines. The client skeletons’ interface with the RPC library and effectively

hide the network from their callers. The server skeleton similarly hides the net-

work from the server procedures that are to be invoked by remote clients,

rpcgen’s output files can be compiled and linked in the usual way. The server

code generated by rpcgen has support for inetd i.e. the server can be started

via inetd or at the command line.

The developer writes server procedures—in any language that observes system

calling conventions—and links them with the server skeleton produced by

rpcgen to get an executable server program. To use a remote program, a pro-

grammer writes an ordinary main program that makes local procedure calls to the

client skeletons. Linking this program with rpcgen’s skeletons creates an exe-

cutable program, rpcgen options can be used to suppress skeleton generation

and to specify the transport to be used by the server skeleton.

Like all compilers, rpcgen reduces development time that would otherwise be

spent coding and debugging low-level routines. All compilers, including

rpcgen, do this at a small cost in efficiency and flexibility. However, many
compilers allow escape hatches for programmers to mix low-level code with

high-level code, rpcgen is no exception. In speed-critical applications, hand-

written routines can be linked with the rpcgen output without any difficulty.

Also, one may proceed by using rpcgen output as a starting point, and then

rewriting it as necessary. (For a discussion of RPC programming without

rpcgen, see the next chapter, the Remote Procedure Call Programming Guide).

microsystems
41 Revision A, of 27 March 1990

42 Network Programming

Converting Local Procedures Assume an application that runs on a single machine, one which we want to con-
into Remote Procedures vert to run over the network. Here we will demonstrate such a conversion by

way of a simple example—a program that prints a message to the console:

(
N

/*

* printmsg.c: print a message on the console

*1

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{

char *message;

if (argc != 2) {

fprintf (stderr, "usage: %s <message>\n", argv[0]);
exit (1)

;

)

message = argv[l];

if (! printmessage (message)) {

fprintf (stderr, "%s: couldn' t print your message\n"

,

argv [0])

;

exit (1) ;

}

printf ("Message Delivered! \n")

;

exit (0)

;

}

/*

* Print a message to the console.

* Return a boolean indicating whether the message was actually printed.

*1

printmessage (msg)

char *msg;

{

FILE *f

;

f = fopen (" /dev/console", "w")

;

if (f == NULL) {

return (0)

;

}

fprintf (f, "%s\n", msg)

;

fclose (f)

;

return (1)

;

}

v >

And then, of course:

Asun
microsystems

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 43

f
—

-

N

example% cc printmsg . c -o printmsg
example% printmsg "Hello, there."
Message delivered!
example%

-j

If printmessage () was turned into a remote procedure, then it could be

called from anywhere in the network. Ideally, one would just like to stick a key-

word like remote in front of a procedure to turn it into a remote procedure.

Unfortunately, we have to live within the constraints of the C language, since it

existed long before RPC did. But even without language support, it’s not very

difficult to make a procedure remote.

In general, it’s necessary to figure out what the types are for all procedure inputs

and outputs. In this case, we have a procedure printmessage () which takes

a string as input, and returns an integer as output. Knowing this, we can write a

protocol specification in RPC language that describes the remote version of

printmessage () . Here it is:

(\

/*

* msg.x: Remote message printing protocol

*1

program MESSAGEPROG {

version MESSAGEVERS {

int PRINTMESSAGE (string) = 1;

1
= l;

}
= 0x20000099;

/

Remote procedures are part of remote programs, so we actually declared an

entire remote program here which contains the single procedure PRINTMES-
SAGE. By convention, all RPC services provide for procedure 0. It is normally

used for pinging purposes. The above procedure was declared to be in version 1

of the remote program. No null procedure (procedure 0) is necessary in the pro-

tocol definition because rpcgen generates it automatically and the user is not

concerned with it.

Notice that everything is declared with all capital letters. This is not required,

but is a good convention to follow.

Notice also that the argument type is “string” and not “char *”. This is because a

“char *” in C is ambiguous. Programmers usually intend it to mean a null-

terminated string of characters, but it could also represent a pointer to a single

character or a pointer to an array of characters. In RPC language, a null-

terminated string is unambiguously called a “string”.

There are just two more things to write. First, there is the remote procedure

itself. Here’s the definition of a remote procedure to implement the PRINTMES-
SAGE procedure we declared above.

»sun
microsystems

Revision A, of 27 March 1990

44 Network Programming

/*

* msgjproc.c: implementation of the remote procedure "printmessage"
*/

include <stdio.h>
include <rpc/rpc.h> /* always needed */

include "msg . h" / * msg.h will be generated by rpcgen * /

/*

* Remote verson of "printmessage"
*/

int *

printmessage_l (msg)

char **msg;

{

static int result; /* must be static! */
FILE *f

;

f = fopen (" /dev/console", "w");
if (f == NULL) {

result = 0;

return (Sresult)

;

}

fprintf (f , "%s\n", *msg)

;

fclose (f)

;

result = 1;

return (&result)

;

}

Notice here that the declaration of the remote procedure printmessage_l
(

)

differs from that of the local procedure printmessage
() in three ways:

1. It takes a pointer to a string instead of a string itself. This is true of all

remote procedures: they always take pointers to their arguments rather than

the arguments themselves. If there are no arguments, specify void.

2. It returns a pointer to an integer instead of an integer itself. This is also

characteristic of remote procedures— they return pointers to their results.

Therefore it is important to have the result declared as a static. If there

are no arguments, specify void.

3. It has an “_1” appended to its name. In general, all remote procedures called

by rpcgen are named by the following rule: the name in the procedure

definition (here PRINTMESSAGE) is converted to all lower-case letters, an
underbar is appended to it, and finally the version number (here 1) is

appended.

The last thing to do is declare the main client program that will call the remote
procedure. Here it is: —

>
/*

* rprintmsg.c: remote version of "printmsg.c"
*/

Revision A, of 27 March 1990

Chapter 3 — rpcgen Programming Guide 45

include <stdio.h>
#include <rpc/rpc.h> /* always needed */

include "msg . h" / * msg.h will be generated by rpcgen * /

main(argc, argv)
int argc;
char *argv[];

{

CLIENT *cl;

int *result;
char *server;
char *message;

if (argc != 3) {

fprintf (stderr,

"usage: %s host message\n", argv[0]);
exit (1)

;

}

server = argv[l];
message = argv [2]

;

/*

* Create client "handle" usedfor calling MESSAGEPROG on the

* server designated on the command line. We tell the RCP package
* to use the "tcp" protocol when contacting the server.

*/

cl = clnt_create (server, MESSAGEPROG, MESSAGEVERS,
"tcp")

;

if (cl == NULL) {

/*

* Couldn't establish connection with server.

* Print error message and die.

*/

clnt_j?createerror (server) ;

exit (1)

;

}

/*

* Call the remote procedure "printmessage" on the server

*1

result = printmessage_l (Smessage, cl)

;

if (result == NULL) {

I*

* An error occurred while calling the server.

* Print error message and die.

*1

clnt_perror (cl, server);
exit (1) ;

}

/*

* Okay, we successfully called the remote procedure.

*1

if (*result == 0) {

I*

Revision A, of 27 March 1990

46 Network Programming

* Server was unable to print our message.

* Print error message and die.

*/

fprintf (stderr, "%s: %s couldn't print your message\n",
argv[0], server);
exit (1)

;

}

/*

* The message got printed on the server’s console

*/

printf ("Message delivered to %s!\n", server);
exit (0)

;

}

V /

There are a few points worth noting here:

1 . First a client “handle” is created using the RPC library routine

clnt_create () . This client handle will be passed to the skeleton rou-

tines which call the remote procedure.

2. The last parameter to clnt_create is “tcp”, the transport on which you
want your application to run on. It could also have been “udp”, as an alter-

nate transport. For more information on transport selection see the section

Transport Selection in Chapter 2— Introduction to Remote Procedure

Calls.

3. The remote procedure printmessage_l () is called exactly the same
way as it is declared in msg_joroc . c except for the inserted client handle

as the second argument.

4. The remote procedure call can fail in two ways. The RPC mechanism itself

can fail or, alternatively, there can be an error in the execution of the actual

remote procedure. In the former case, the remote procedure (in this case

print_mes sage_l ()) returns with a NULL. In the later case, however,

the details of error reporting are application dependent. Here, the error is

being reported via *result

.

Here’s how to put all of the pieces together:

c
example

%

rpcgen msg.x
example

%

cc rprintmsg. c msg_clnt.c -o rprintmsg
example

%

v

cc msg_proc . c msg_svc . c -o msg_server
y

Two programs were compiled here: the client program rprintmsg and the

server program msg_server. Before doing this though, rpcgen was used to

fill in the missing pieces.

Here is what rpcgen (called without any flags) did with the input file msg . x:

1. It created a header file called msg .h that contained #def ine’s for MES-
SAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in the Other

modules. This file should be included by both the client and the server

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 47

modules.

2. It created the client “skeleton” routines in the msg_c lnt . c file. In this

case there is only one, the printmessage_l () that was referred from the

printmsg client program. If the name of the input file is FOO . x, the

client skeletons output file is called FOO_clnt . c.

3. It created the server program in msg_svc . c which calls printmes-
sage_l () from msg_proc . c. The rule for naming the server output file

is similar to the previous one: for an input file called FOO . x, the output

server file is named FOO_svc . c.

(Note that, given the -T argument, rpcgen creates an additional output file

which contains index information used for the dispatching of service routines).

Now we’re ready to have some fun. First, copy the server to a remote machine
and run it. For this example, the machine is called “moon”.

Note that servers generated by
rpcgen can be invoked with port-

monitors like inetd as well as from
the command line, if they are

invoked with the -I option. —— —
sun% rprintmsg moon "Hello, moon."

“\

V

The message will get printed on “moon”s console. You can print a message on

anybody’s console (including your own) with this program if you can copy the

server to their machine and run it.

moon% msg_server &

^

Then on our local machine (“sun”) we can print a message on “moon”s console.

An Advanced Example The previous example only demonstrated the automatic generation of client and

server RPC code, rpcgen may also be used to generate XDR routines, that is,

the routines necessary to convert local data structures into network format and

vice-versa. This next example is more advanced in that it presents a complete

RPC service—a remote directory listing service, which uses rpcgen not only to

generate skeleton routines, but also to generate the XDR routines. Here is the

protocol description file.

>

/*

* dir.x: Remote directory listing protocol

*/

const MAXNAMELEN = 255; /* maximum length ofa directory entry */

typedef string nametype<MAXNAMELEN>; /* a directory entry */

typedef struct namenode *namelist; /* a link in the listing */

/*

* A node in the directory listing

*/

struct namenode {

nametype name; /* name ofdirectory entry */

namelist next; /* next entry */

}

;

sue Revision A, of 27 March 1990
microsystems

48 Network Programming

1*
" *

* The result ofa READDIR operation.

*1

union readdir_res switch (int errno) {

case 0:

namelist list; /* no error: return directory listing */

default

:

void; /* error occurred: nothing else to return */

}

;

/*

* The directory program definition

*1

program DIRPROG {

version DIRVERS {

readdir_res
READDIR (nametype) = 1;

}
= 1 ;

}
= 0x20000076;

NOTE Types (like readdir_res in the example above) can be defined using the

"struct” , "union" and “enum" keywords, but those keywords should not be used

in subsequent declarations ofvariables of those types. For example, ifyou define

a union “foo”
,
you should declare using only “foo" and not “unionfoo”. In

fact, rpcgen compiles RPC unions into C structures and it is an error to

declare them using the “union" keyword.

Running rpcgen on dir . x creates four output files. First are the basic three

itemized above: those containing the header file, client skeleton routines and

server skeleton. The fourth contains the XDR routines necessary for converting

the data types we declared into XDR format and vice-versa. These are output in

the file dir_xdr . c. For each data type used in the . x file, rpcgen assumes

that the RPC/XDR library has a routine defined with the name of that data type

prepended by xdr_ (e.g. xdr_int). If the data type was defined in the . x file,

then rpcgen will generate the required xdr routine. If there are no such data

types, then the file (e.g. dir_xdr . c) will not be generated. If the data types

were used but not defined, then the user has to provide that xdr routine. This is a

way for users to provide their own customized xdr routines.

Here is the implementation of the READDIR procedure.

(

1*

* dirjproc.c: remote readdir implementation

*1

#include <rpc/rpc.h> /* Always needed */

tinclude <sys/dir.h>
#include "dir.h" /* Created by rpcgen */

extern int errno;
extern char *malloc();
extern char *strdup();

i. jt

sun
microsystems

Revision A, of 27 March 1990

Chapter 3— rpogen Programming Guide 49

readdir_res *

readdir_l (dirname)
nametype *dirname;

{

DIR *dirp;
struct direct *d;

namelist nl;

namelist *nlp;
static readdir_res res; /* must be static'. */

* Open directory

*1

dirp = opendir (*dirname)

;

if (dirp == NULL) {

res.errno = errno;
return (&res)

;

* Free previous result

*/

xdr_f ree (xdr_readdir_res, Sres)

;

/*

* Collect directory entries.

* Memory allocated here will befreed by xdr_free
* next time readdir_l is called

*1

nip = & res . readdir_res_u . list;
while (d = readdir (dirp)) {

nl = *nlp = (namenode *) malloc (sizeof (namenode))

;

nl->name = strdup (d->d_name)

;

nip = &nl->next;

)

*nlp = NULL;

/*

* Return the result

*1

res.errno = 0;

closedir (dirp)

;

return (Sres)

;

Finally, there is the client side program to call the server:

1*

N

* rls.c: Remote directory listing client

*/

include <stdio.h>
include <rpc/rpc.h> /* always need this * /

include "dir.h" /* will be generated by rpcgen * /

Revision A, of 27 March 1990

50 Network Programming

extern int errno;

main (argc, argv)

int argc;
char *argv[];

{

CLIENT *cl;

char *server;
char *dir;
readdir_res * result;
namelist nl;

if (argc != 3) {

fprintf (stderr, "usage: %s host directory\n",
argv [0])

;

exit (1)

;

}

server = argv[l];
dir = argv [2];

/*

* Create client "handle" usedfor calling DIRPROG on the

* server designated on the command line. Use the tcp protocol when
* contacting the server.

*1

cl = clnt_create (server, DIRPROG, DIRVERS, "tcp")

;

if (cl == NULL) {

/*

* Couldn’t establish connection with server.

* Print error message and die.

*/

clnt_pcreateerror (server)

;

exit (1)

;

)

/*

* Call the remote procedure readdir on the server

*1

result = readdir_l (&dir, cl) ;

if (result == NULL) {

/*

* An RPC error occurred while calling the server.

* Print error message and die.

*/

clnt_perror (cl, server)

;

exit (1)

;

}

/*

* Okay, we successfully called the remote procedure.

*1

if (result->errno != 0) {

/*

* A remote system error occurred.

* Print error message and die.

Revision A, of 27 March 1990

Compile everything, and run.

f
sun% rpcgen dir.x
sun% cc -c dir xdr.c
sun% cc rls.c dir_clnt.c dir xdr.o -o rls
sun% cc dir_svc.c dir proc .

c

dir_xdr.o -o dir svc

sun% dir_svc &

moon% rls sun /usr/pub

ascii
eqnchar
greek
kbd
marg8
tabclr
tabs
tabs4
moon%

c.
J

rpcgen generated client code does not release the memory allocated for the

results of the RPC call. Users can call xdr_free to free up the memory once
they are done with it. It is quite similar to calling free () except that here one
also has to pass the xdr routine for the result. In this example, after printing the

list, the user could have called

xdr_free (xdr_readdir_res, result)

;

Revision A, of 27 March 1990

52 Network Programming

Debugging Applications

The C-Preprocessor

It is often difficult to debug distributed applications like these because the client

and the server are two different processes. To simplify the testing and debugging

process, the client program and the server procedure can be tested together as a

single program by simply linking them with each other rather than with the client

and server skeletons. This could be done in the previous example by doing:

cc rls.c dir_clnt.c dir_proc.c dir_xdr.c -o rls

The procedure calls will be executed as ordinary local procedure calls and the

program can be debugged with a local debugger such as dbxt ool. When the

program is working, the client program can be linked to the client skeleton pro-

duced by rpcgen and the server procedures can be linked to the server skeleton

produced by rpcgen.

NOTE Ifyou do this, you will have to comment out calls to client create RPC library

routines (e.g . clnt_create ()).

There are two kinds of errors which can happen in an RPC call. The first kind of

error is caused if there is some problem with the actual mechanism of the remote

procedure calls. This could happen in such cases as the procedure is not avail-

able, the remote server is not responding, the remote server is unable to decode

the arguments, and so on. In the previous example, an RPC error has occurred if

result is NULL. The reason for the failure can be printed by using

clnt_perror () , or an error string can be returned through

clnt_sperror ()

.

The second type of error is due to the server itself. In the previous example, an

error was reported if opendir () fails. Now you can see why readdir_res
is of type union. The handling of these types of errors are the responsibility of

the programmer.

The C-preprocessor, cpp, is run on all input files before they are compiled, so all

the preprocessor directives are legal within a “.x” file. Five macro identifiers may
have been defined, depending upon which output file is getting generated. They

are:

Identifier Usage

RPC_HDR
RPC_XDR
RPC_SVC
RPC_CLNT
RPC_TBL

For header-file output

For XDR routine output

For server-skeleton output

For client skeleton output

For index table output

Also, rpcgen does some additional preprocessing of the input file. Any line

that begins with a percent sign is passed directly into the output file, without any

interpretation of the line. Here is a simple example that demonstrates this pro-

cessing feature.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 53

When using the '%' feature, there is no guarantee that rpcgen will place the

output where you intended. If you have problems of this type, we recommend
you to not use this feature.

rpcgen Programming Notes

Network Types By default rpcgen generates server code for both UDP & TCP transports. The
-s flag creates a server which responds to requests on the specified transport.

The following example creates a udp server:

example# rpcgen -s udp_n proto.

x

User-Provided Define rpcgen also provides a means of defining symbols and assigning values to

Statements them. These defined symbols are passed on to the C preprocessor when it is

invoked. This facility is useful when the user wants to, for example, invoke

debugging code which is enabled only when the DEBUG symbol is defined. For
example:

54 Network Programming

Inetd Support

Dispatch Tables

rpcgen can also be used to create RPC servers which can be invoked by

inetd when a request for that service comes in.

r a

example% rpcgen -I proto.

x

^

The server code in proto_svc . c has the required support for inetd. For

more information on how to setup the entry for RPC services in

/etc/inetd . conf
,
please see the Using Inetd section of Remote Procedure

Call Programming Guide.

In many applications, it is useful for services to wait after satisfying a servicing

request, on the chance that another will follow. However, if there is no call

within the specified time, the server will exit and the portmonitor will continue to

monitor requests for its services. By default, services wait of 120 seconds after

servicing a request before exiting. The user can, however, change that interval

with the -K flag.

r

example % rpcgen -I -K 20 proto.

x

V j

Here the server will wait only for 20 seconds before exiting. If you want the

server to exit immediately, -K 0 can be used, while if the server is intended to

stay around forever (a normal server) the appropriate argument is -K -1.

There are a number of cases when dispatch tables are useful. For example, the

server dispatch routine may need to check authorization and then invoke the ser-

vice routine; or a client library may want to deal with the details of storage

management and XDR data conversion.

r A

example% rpcgen -T proto.

x

V J

Here rpcgen generates RPC dispatch tables for each program defined in the

protocol description file, proto . x, in the file proto_tbl . i. (The suffix .i

stands for “index”). See below for how to use this file when compiling programs.

Each entry in the table is a struct rpcgen_table, defined in the header file

proto . h as follows:

proc is a pointer to the service routine.

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 55

xdr_arg is a pointer to the input (argument) xdr_routine,

len_arg is the length in bytes of the input argument,

xdr_res is a pointer to the output (result) xdr_routine, and

len_res is the length in bytes of the output result.

The table, named dirprog_l_table, is indexed by procedure number. The
variable dirprog_l_nproc contains the number of entries in the table.

An example of how to locate an procedure in the dispatch tables is demonstrated

by the routine find_proc:
' — —

\

struct rpcgen_table *

find_proc (proc)

long proc;

{

if (proc >= dirprog_l_nproc)
/* error */

else
return (&dirprog_l_table [proc])

;

}

v ,

Each entry in the dispatch table contains a pointer to the corresponding service

routine. However, the service routine is not defined in the client code. To avoid

generating unresolved external references, and to require only one source file for

the dispatch table, the actual service routine initializer is

RPCGEN_ACTION (proc_ver)

.

This way, the same dispatch table can be included in both the client and the

server. Use the following define when compiling the client:

Client Programming Notes

Timeout Changes RPC sets a default timeout of 25 seconds for RPC calls when clnt_create (

)

is used. This means RPC will wait for 25 seconds to get the results from the

server. If it does not hear within that time period, then perhaps the server isn’t

running or the remote machine crashed or the network is unreachable. There are

many possibilities of why no answer is heard. In such cases the function will

return NULL and the error can be printed using clnt_perrno ()

.

There are cases when the user wants to change the timeout value to accommodate
the application needs or the fact that the server is slow and quite far away. The

microsystems
Revision A, of 27 March 1990

56 Network Programming

timeout can be changed using clnt_control () . Here is a small code frag-

ment to demonstrate use of clnt_control ()

:

r N

struct timeval
CLIENT *cl;

tv;

cl = clnt_create ("somehost", SOMEPROG, SOMEVERS, "tcp");
if (cl == NULL)

exit (1) ;

1

tv.tv_sec = 60;

{

/ * change timeout to 1 minute * /

tv.tv_usec = 0; / * this should always be set * /

clnt_control (cl , CLSET_TIMEOUT, &tv) ;

V

Client Authentication The client create routines do not, by default, have any facilities for client authen-

tication, but the client may sometimes want to authenticate itself to the server.

For more information on how to perform authentication, see the Authentication

section of Remote Procedure Call Programming Guide. Doing so is trivial, and

looks like this:

'

CLIENT *cl;

cl = client_create ("somehost", SOMEPROG, SOMEVERS, "udp")

;

if (cl ! = NULL) {

/ * To set UNIX style authentication * /

cl->cl_auth = authunix_create_default ()

;

1

V ,

Server Programming Notes

Handling Broadcast on the Clients may sometimes broadcast to find out whether a particular server exists on
Server Side the network or just to find out about all the servers for a particular program and

version number. These calls are made via clnt_broadcast () . Note that

there is no rpcgen support for that. Please see Broadcast RPC Synopsis in

Remote Procedure Call Programming Guide.

When a procedure is known to be called via broadcast RPC, it is usually wise for

the server to not reply unless it can provide some useful information to the client.

This prevents the network from getting flooded by useless replies.

To prevent the server from replying, a remote procedure can return NULL as its

result, and the server code generated by rpcgen will detect this and not send out

a reply.

Here is an example of a procedure that replies only if it thinks it is an NFS
server:

Asun
microsystems

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 57

Note that if procedure returns type “void *”, they must return a non-NULL
pointer if they want RPC to reply for them.

Server procedures will often want to know more about an RPC call than just its

arguments. For example, getting authentication information is important to pro-

cedures that want to implement some level of security. This extra information is

actually supplied to the server procedure as a second argument. (For details see

the structure of svc_req, in the Authentication section of Remote Procedure

Call Programming Guide. Here is an example to demonstrate its use. What
we’ve done here is rewrite the previous pr intmes sage_l ()

procedure to

only allow root users to print a message to the console.

Other Information Passed to

Server Procedures

Revision A, of 27 March 1990

58 Network Programming

RPC Language

Definitions

Enumerations

RPC language is an extension ofXDR language. The sole extension is the addi-

tion of the program and version types. For a complete description of the

XDR language syntax, see the External Data Representation Standard: Protocol

Specification chapter. For a description of the RPC extensions to the XDR
language, see the Remote Procedure Calls: Protocol Specification chapter.

However, XDR language is so close to C that if you know C, you know most of

it already. We describe here the syntax of the RPC language, showing a few

examples along the way. We also show how the various RPC and XDR type

definitions get compiled into C type definitions in the output header file.

An RPC language file consists of a series of definitions.

definition-list

:

definition
definition definition-list

It recognizes the following types of definitions.

definition:
enum-definition
typedef-definition
const -definition
declaration-definition
struct-defini tion
union-definition
program-definition

XDR enumerations have the same syntax as C enumerations.

enum-definition

:

"enum" enum-ident "{"

enum-value-list
II

}
II

enum-value-list

:

enum-value
enum-value enum-value-list

enum-value

:

enum-value-ident
enum-value-ident "=" value

Here is a short example of an XDR enum, and the C enum that it gets compiled

into.

enum colortype {

RED = 0,

GREEN = 1,

BLUE = 2

enum colortype {

RED = 0,—> GREEN = 1 ,

BLUE = 2,

} ;

typedef enum colortype colortype;

Revision A, of 27 March 1990

Chapter 3 — rpcgen Programming Guide 59

Typedefs XDR typedefs have the same syntax as C typedefs.

typedef-definition:
"typedef" declaration

Here is an example that defines a fname_type used for declaring file name
strings that have a maximum length of 255 characters.

typedef string fname_type<255>; —> typedef char *fname_type;

Constants XDR constants may be used wherever a integer constant is used, for example, in

array size specifications.

const-definition

:

"const" const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12.

const DOZEN = 12; —> #define DOZEN 12

Declarations In XDR, there are only four kinds of declarations.

declaration:
simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

1) Simple declarations are just like simple C declarations.

simple-declaration

:

type-ident variable-ident

Example:

colortype color; —> colortype color;

2) Fixed-length Array Declarations are just like C array declarations:

fixed-array-declaration

:

type-ident variable-ident "[" value "]"

Example:

colortype palette [8]; —> colortype palette [8];

3) Variable-Length Array Declarations have no explicit syntax in C, so XDR
invents its own using angle-brackets.

variable-array-declaration:
type-ident variable-ident "<" value ">"

type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size may be

omitted, indicating that the array may be of any size.

int heights<12>; /* at most 12 items */

int widthsO; /* any number ofitems */

Since variable-length arrays have no explicit syntax in C, these declarations are

microsystems
Revision A, of 27 March 1990

60 Network Programming

actually compiled into “struct”s. For example, the “heights” declaration gets

compiled into the following struct:

struct {

u_int height s_len; /* # of items in array */

int *heights_val; /* pointer to array */

} heights;

Note that the number of items in the array is stored in the “Jen” component and

the pointer to the array is stored in the “_val” component. The first part of each

of these component’s names is the same as the name of the declared XDR vari-

able.

4) Pointer Declarations are made in XDR exactly as they are in C. You can’t

really send pointers over the network, but you can use XDR pointers for sending

recursive data types such as lists and trees. The type is actually called

“optional-data”, not “pointer”, in XDR language.

pointer-declaration

:

type-ident "*" variable-ident

Example:

listitem *next; —> listitem *next;

Structures An XDR struct is declared almost exactly like its C counterpart. It looks like the

following:

struct-definition

:

"struct" struct-ident "{"

declaration-list
II

|
II

declaration-list

:

declaration
declaration declaration-list

As an example, here is an XDR structure to a two-dimensional coordinate, and

the C structure that it gets compiled into in the output header file.

struct coord { struct coord {

int x; —> int x;

int y; int y;

1 ; } ;

typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of

the output. This allows one to use “coord” instead of “struct coord” in declara-

tions.

Unions XDR unions are discriminated unions, and look quite different from C unions.

They are more analogous to Pascal variant records than they are to C unions.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 6

1

union-definition:
"union" union-ident "switch" " (" simple declaration ") " "

case-list
II

j

II

case-list

:

"case" value declaration
"case" value declaration case-list
"default" declaration ";"

Here is an example of a type that might be returned as the result of a “read data”

operation. If there is no error, return a block of data. Otherwise, don’t return

anything.

union read_result switch (int errno) (

case 0:

opaque data [1024]

;

default

:

void;

};

It gets compiled into the following:

struct read_result {

int errno;
union {

char data [1024]

;

} read_result_u;
}

;

typedef struct read_result read_result;

Notice that the union component of the output struct has the same name as the

structure type name, except for the trailing “_u”.

Programs RPC programs are declared using the following syntax:

program-definition

:

"program" program-ident " {

"

version-list
")" "=" value

version-list

:

version
version version-list

version:
"version" version-ident "{"

procedure-list
"}" "=" value

procedure-list

:

procedure ";"

procedure procedure-list

procedure

:

type-ident procedure-ident "(" type-ident ")" "=" value

®sun
microsystems

Revision A, of 27 March 1990

62 Network Programming

Special Cases

For example, here is the time protocol, revisited:

I*

* time.x: Get or set the time. Time is represented as number ofseconds
* since 0:00, January 1, 1970.

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET (void) = 1;

void TIMESET (unsigned) = 2;

1
= 1 ;

}
= 44;

This file compiles into these #defines in the output header file:

#define TIMEPROG 44

#define TIMEVERS 1

define TIMEGET 1

define TIMESET 2

There are a few exceptions to the rules described above.

Booleans: C has no built-in boolean type. However, the RPC library has a

boolean type called bool_t that is either TRUE or FALSE. Things declared as

type bool in XDR language are compiled into bool_t in the output header

file.

Example:

bool married; —> bool_t married;

Strings: C has no built-in string type, but instead uses the null-terminated “char
*” convention. In XDR language, strings are declared using the “string” key-

word, and compiled into “char *”s in the output header file. The maximum size

contained in the angle brackets specifies the maximum number of characters

allowed in the strings (not counting the NULL character). The maximum size

may be left off, indicating a string of arbitrary length.

Examples:

string name<32>; —> char *name;
string longnameO; —> char *longname;

Opaque Data: Opaque data is used in RPC and XDR to describe untyped data,

that is, just sequences of arbitrary bytes. It may be declared either as a fixed or

variable length array.

Examples

:

opaque diskblock[512] ; —> char diskblock [512]

;

opaque filedata<1024>; —> struct {

u_int filedata_len;
char *filedata_val;

} filedata;

Voids: In a void declaration, the variable is not named. The declaration is just

“void” and nothing else. Void declarations can only occur in two places: union

Revision A, of 27 March 1990

Chapter 3— rpcgen Programming Guide 63

definitions and program definitions (as the argument or result of a remote pro-

cedure).

Revision A, of 27 March 1990

64 Network Programming

Revision A, of 27 March 1990

4

Remote Procedure Call Programming

Guide

This document assumes a working knowledge of network theory. It is intended

for programmers who wish to write network applications using remote procedure

calls (explained below), and who want to understand the RPC mechanisms usu-

ally hidden by the rpcgen (1) protocol compiler, rpcgen is described in

detail in the previous chapter, the rpcgen Programming Guide.

NOTE Before attempting to write a network application, or to convert an existing non-

network application to run over the network, you may want to understand the

material in this chapter. However,for most applications, you can circumvent the

need to cope with the details presented here by using rpcgen. The An

Advanced Example section of that chapter contains the complete sourcefor a

working RPC service—a remote directory listing service which uses rpcgen to

generate XDR routines as well as client and server stubs.

4.1. Layers of RPC The RPC interface can be seen as being divided into three layers.6

The Highest Layer: The highest layer is totally transparent to the operating sys-

tem, machine and network upon which is run. It’s probably best to think of this

level as a way of using RPC, rather than as a part ofRPC proper. Programmers

who write RPC routines should (almost) always make this layer available to oth-

ers by way of a simple C front end that entirely hides the networking.

To illustrate, at this level a program can simply make a call tornusers(),aC

routine which returns the number of users on a remote machine. The user is not

explicitly aware of using RPC— they simply call a procedure, just as they would

call malloc ()

.

The Middle Layer: The middle simplified layer is really “RPC proper.” Here, the

user doesn’t need to consider details about sockets, the UNIX system, or other

low-level implementation mechanisms. They simply make remote procedure

calls to routines on other machines. The selling point here is simplicity. It’s this

layer that allows RPC to pass the “hello world” test— simple things should be

simple. The middle layer routines are used for most applications.

Simplified RPC calls are made with the system routines registerrpc ()

,

callrpc () and svc_run () . registerrpc () obtains a unique system-

6 For a complete specification of the routines in the remote procedure call Library, see the rpc (3N) manual

page.

65 Revision A, of 27 March 1990

66 Network Programming

Higher Layers ofRPC

wide procedure-identification number, and callrpc () actually executes a

remote procedure call. At the middle level, a call to rnusers () is imple-

mented by way of these two routines.

The middle layer is rarely used in serious programming due to its inflexibility

(simplicity). It does not allow timeout specifications or the choice of transport.

It allows no UNIX process control or flexibility in case of errors. It doesn’t sup-

port multiple kinds of call authentication. The programmer rarely needs all these

kinds of control, but one or two of them is often necessary.

The Lowest Layer: The lowest layer does allow these details to be controlled by
the programmer. Programs written at this level are also most efficient and allow

for flexibility. The lowest layer routines include client creation routines such as

clnt_create () , the actual client call clnt_call () , server creation rou-

tines such as svcudp_create () , and the server registration routine

svc_register ()

.

This layer consists of RPC-library based services. Imagine you’re writing a pro-

gram that needs to know how many users are logged into a remote machine. You
can do this by calling the RPC library routine rnusers () , as illustrated below:

finclude <stdio.h>

main (argc, argv)
int argc;
char **argv;

{

int num;

if (argc != 2) {

fprintf (stderr, "usage: rnusers hostname\n")

;

exit (1)

;

}

if {(num = rnusers (argvfl])) < 0) {

fprintf (stderr, "error: rnusers\n")

;

exit (1) ;

}

printf ("%d users on %s\n", num, argv[l]);
exit (0)

;

}

RPC library routines such as rnusers () are in the RPC services library

librpcsvc . a. Thus, the program above should be compiled with

example% cc program. c -lrpcsvc

rnusers () , like the other RPC library routines, is documented in section 3R of

the System Services Overview, the same section which documents the standard

Sun RPC services. See the intro (3R) manual page for an explanation of the

documentation strategy for these services and their RPC protocols.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 67

Here are some of the RPC service library routines available to the C programmer:

Table 4- 1 RPC Service Library Routines

Routine Description

rnusers Return number of users on remote machine

rusers Return information about users on remote machine

havedisk Determine if remote machine has disk

rstat Get performance data from remote kernel

rwall Write to specified remote machines

yppasswd Update user password in Network Information Service

Other RPC services— for example ether, mount, rquota, and spray—
are not available to the C programmer as library routines. They do, however,

have RPC program numbers so they can be invoked with callrpc () , which

will be discussed in the next section. Most of them also have compilable

rpcgen (1)
protocol description files. Some of the files (in the form *.x) may

be found in / u sr /include /rpcsvc. (The rpcgen protocol compiler radi-

cally simplifies the process of developing network applications. See the

rpcgen Programming Guide chapter for detailed information about rpcgen

and rpcgen protocol description files).

Middle Layers ofRPC The simplest interface, which explicitly makes RPC calls, uses the functions

callrpc () and registerrpc () . Using this method, the number of remote

users can be obtained as follows:

>

include <stdio.h>
include <rpc/rpc.h>
include Crpcsvc/rusers . h>

main(argc, argv)

int argc;

char **argv;

1

unsigned long nusers;
int stat;

if (argc != 2) {

fprintf (stderr, "usage: nusers hostname\n")

;

exit (1)

;

}

if (stat = callrpc (argv [1]

,

RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
xdr_void, 0, xdr_u_long, Snusers) != 0) {

clnt_perrno (stat)

;

exit (1)

;

}

printf("%d users on %s\n", nusers, argv[l]);
exit (0) ;

}—
Revision A, of 27 March 1990

68 Network Programming

The simplest way of making remote procedure calls is with the RPC library rou-

tine callrpc () . It has eight parameters. The first is the name of the remote

server machine. The next three parameters are the program, version, and pro-

cedure numbers—together they identify the procedure to be called. The fifth and
sixth parameters are an XDR filter and an argument to be encoded and passed to

the remote procedure. XDR filter is a user provided procedure which can encode

or decode machine native data to or from the XDR format. The final two param-

eters are an XDR filter for decoding the results returned by the remote procedure

and a pointer to the place where the procedure’s results are to be stored. Multiple

arguments and results are handled by embedding them in structures. If

callrpc () completes successfully, it returns zero; else it returns a nonzero

value. The return codes are found in <rpc/clnt . h>.

callrpc () needs both the type of the RPC argument, as well as a pointer to

the argument itself (and similarly for the result). For RUSERSPROC_NUM, the

return value is an unsigned long, so callrpc () has xdr_u_long () as

its first return parameter, which says that the result is of type unsigned long,
and &nusers as its second return parameter, which is a pointer to where the

long result will be placed. Since RUSERSPROC_NUM takes no argument, the

argument parameter of callrpc () is xdr_void. In such cases the argument

should be NULL.

After trying several times to deliver a message, if callrpc ()
gets no answer, it

returns with an error code. Methods for adjusting the number of retries or for

using a different protocol require you to use the lower layer of the RPC library,

discussed later in this document.

The remote server procedure corresponding to the above might look like this:

(
N

unsigned long *

nuser {indata)

char *indata;

{

static unsigned long nusers;

/*

* Code here to compute the number ofusers
* and place result in variable nusers.
*1

return (inusers)

;

}

v _>

It takes one argument, which is a pointer to the input of the remote procedure call

(ignored in our example), and it returns a pointer to the result. In the current ver-

sion of C, character pointers are the generic pointers, so input argument and the

return value can be cast to char *.

Normally, a server registers all of the RPC calls it plans to handle, and then goes
into an infinite loop waiting to service requests. If rpcgen is used to provide

this functionality, it will also generate a server dispatch function. But users can
write the servers themselves using registerrpc () and especially so for

microsystems
Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 69

simple applications like the one shown here. In this example, there is only a sin-

gle procedure to register, so the main body of the server would look like this:

The registerrpc () routine registers a procedure as corresponding to a given

RPC procedure number. The first three parameters, RUSERPROG,

RUSERSVERS, and RUSERSPROC_NUM are the program, version, and pro-

cedure numbers of the remote procedure to be registered; nuser () is the name

of the local procedure that implements the remote procedure; and xdr_void (

)

and xdr_u_long () are the XDR filters for the remote procedure’s arguments

and results, respectively. (Multiple arguments or multiple results are passed as

structures).

The underlying transport mechanism used with registerrpc () is both

callrpcO and UDP.

WARNING Warning: the UDP transport mechanism can only deal with arguments and

results less than 8K bytes in length.

After registering the local procedure, the server program’s main procedure calls

svc_run () , the RPC library’s remote procedure dispatcher. It is this function

that calls the remote procedures in response to RPC requests. Note that the

dispatcher takes care of decoding remote procedure arguments and encoding

results, using the XDR filters specified when the remote procedure was registered

with registerrpc ()

.

Passing Arbitrary Data Types In the previous example, the RPC passes a single unsigned long. RPC can

handle arbitrary data structures, regardless of different machine’s byte orders or

structure layout conventions, by always converting them to a network standard

called External Data Representation (XDR) before sending them over the wire.

The process of converting from a particular machine representation to XDR for-

mat is called serializing, and the reverse process is called deserializing. The type

field parameters of callrpc () and registerrpc () can be a built-in pro-

cedure like xdr_u_long () in the previous example, or a user supplied one.

XDR has these built-in type routines:

Revision A, of 27 March 1990

70 Network Programming

xdr_int (

)

xdr u int (

)

xdr enum()
a

xdr_long (

)

xdr u long() xdr bool (

)

xdr_short () xdr u short (

)

xdr_wrapstring (

)

xdr_char () xdr_u_char ()

J

Note that the routine xdr_string () exists, but cannot be used with

callrpc () and registerrpc () , which only pass two parameters to their

XDR routines. Instead xdr_wrapst ring () can be used. It takes only two

parameters, and is thus OK. It calls xdr_string ()

.

As an example of a user-defined type routine, if you wanted to send the structure

(
—

\

struct simple {

int a;

short b;

} simple;

then you would call callrpc () as

j

r

callrpc (hostname, PROGNUM, VERSNUM, PROCNUM,
A

xdr_simple, & simple . . .) ;

J

where xdr_simple () is written as:

r A

#include <rpc/rpc.h>

xdr_simple (xdrsp, simplep)
XDR *xdrsp;
struct simple *simplep;

{

if (! xdr_int (xdrsp, &simplep->a)

)

return (0) ;

if (! xdr_short (xdrsp, &simplep->b)

)

return (0)

;

return (1) ;

}

v j

An XDR routine returns nonzero (true in the sense of C) if it completes success-

fully, and zero otherwise. A complete description of XDR is in the XDR Proto-

col Specification section of this manual, only few implementation examples are

given here.

NOTE We strongly recommend that rpcgen be used to generate XDR routines. The

“-c" option ofrpcgen can be used to generate just the _xdr . c file.

In addition to the built-in primitives, there are also the prefabricated building

blocks:

Asun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 7

1

f
xdr_array (

)

xdr_bytes (

)

xdr__reference (

)

xdr_vector () xdr union () xdr_pointer (

)

xdr_string (

)

V

xdr_opaque (

)

To send a variable array of integers, you might package them up as a structure

like this

and make an RPC call such as

with xdr varintarr () defined as:

This routine takes as parameters the XDR handle, a pointer to the array, a pointer

to the size of the array, the maximum allowable array size, the size of each array

element, and an XDR routine for handling each array element.

If the size of the array is known in advance, one can use xdr_vector ()

,

which serializes fixed-length arrays.

XDR always converts quantities to 4-byte multiples when serializing. Thus, if

either of the examples above involved characters instead of integers, each charac-

ter would occupy 32 bits. That is the reason for the XDR routine

xdr_bytes () , which is like xdr_array () except that it packs characters;

Revision A, of 27 March 1990

72 Network Programming

Lower Layers ofRPC

xdr_bytes () has four parameters, similar to the first four parameters of

xdr_array () . For null-terminated strings, there is also the xdr_str ing (

)

routine, which is the same as xdr_bytes () without the length parameter. On
serializing it gets the string length from strlen () , and on deserializing it

creates a null-terminated string.

Here is a final example that calls the previously written xdr_simple () as well

as the built-in functions xdr_string () and xdr_reference () , which

chases pointers:

r ^

struct finalexample {

char *string;
struct simple *simplep;

} finalexample;

xdr_finalexample (xdrsp, finalp)
XDR *xdrsp;
struct finalexample *finalp;

{

if (! xdr_string (xdrsp, &finalp->string, MAXSTRLEN)

)

return (0)

;

if (! xdr_reference (xdrsp, &finalp->simplep,
sizeof (struct simple), xdr_simple)

;

return (0)

;

return (1) ;

}

V ,

Note that we could as easily call xdr_simple () here instead of

xdr_reference ()

.

In the examples given so far, RPC takes care of many details automatically for

you. In this section, we’ll show you how you can change the defaults by using

lower layers of the RPC library.

There are several occasions when you may need to use lower layers of RPC.

First, you may need to use TCP, since the higher layer uses UDP, which restricts

RPC calls to 8K bytes of data. Using TCP permits calls to send long streams of

data. For an example, see the TCP section below. Second, you may want to

allocate and free memory while serializing or deserializing with XDR routines.

There is no call at the higher level to let you free memory explicitly. For more

explanation, see the Memory Allocation with XDR section below. Third, you

may need to perform authentication on either the client or server side, by supply-

ing credentials or verifying them. See the explanation in the Authentication sec-

tion below.

sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 73

More on the Server Side The server for the nusers ()
program shown below does the same thing as the

one using registerrpc () above, but is written using a lower layer of the

RPC package:

r —
•n

include <stdio.h>
include <rpc/rpc.h>
include <utmp.h>
include <rpcsvc/rusers . h>

main (

)

1

SVCXPRT *transp;
int nuser ();

transp = svcudp_create (RPC_ANYSOCK)

;

if (transp - NULL)

{

fprintf (stderr, "can't create an RPC server\n")

;

exit (1)

;

1

pmap_unset (RUSERSPROG, RUSERSVERS)

;

if (! svc_register (transp, RUSERSPROG, RUSERSVERS,
nuser, IPPROTO_UDP)) {

fprintf (stderr, "can't register RUSER service\n")

;

exit (1) ;

1

svc_run(); /* Never returns */

fprintf (stderr, "should never reach this point\n");
}

nuser (rqstp, transp)
struct svc_req * rqstp;
SVCXPRT *transp;

{

unsigned long nusers;

switch (rqstp->rq_proc) {

case NULLPROC:
if (! svc_sendreply (transp, xdr_void, 0))

fprintf (stderr, "can't reply to RPC call\n") ;

return;
case RUSERSPROC_NUM:

/*

* Code here to compute the number ofusers
* and assign it to the variable nusers
*/

if (! svc_sendreply (transp, xdr_u_long, Snusers)

)

fprintf (stderr, "can't reply to RPC call\n");
return;

default

:

svcerr_noproc (transp)

;

return;

1

1

sun
microsystems

Revision A, of 27 March 1990

74 Network Programming

c)

First, the server gets a transport handle, which is used for receiving and replying

to RPC messages. If the argument to svcudp_create () is RPC_ANYSOCK,

the RPC library creates a socket on which to receive and reply to RPC calls.

Otherwise, svcudp_create () expects its argument to be a valid socket

number. If you specify your own socket, it can be bound or unbound. If it is

bound to a port by the user, the port numbers of svcudp_create () and

clntudp_create () (the low-level client routine) must match,

registerrpc () uses svcudp_create () to get a UDP handle. If you

require a more reliable protocol, call svctcp_create () instead.

After creating an SVCXPRT, the next step is to call pmap_unset () so that if

the nuser s () server crashed earlier, any previous trace of it is erased before

restarting. More precisely, pmap_unset () erases the entry for RUSERSPROG
from the portmapper’s tables.

Finally, we associate the program number RUSERSPROG and version

RUSERSVERS with the procedure nuser () , which in this case, is

IPPROTO_UDP. Notice that unlike registerrpc () , there are no XDR rou-

tines involved in the registration process. Also, registration is done on the pro-

gram level rather than procedure level. A service may choose to register its port

number with the local portmapper service. This is done by specifying a non-zero

protocol number in the final argument of svc_register () . A client can dis-

cover the server’s port number by consulting the portmapper on their server’s

machine. This can be done automatically by specifying a zero port number in

clntudp_create () or clnttcp_create ()

.

The user routine nuser () must call and dispatch the appropriate XDR routines

based on the procedure number. Note that two things are handled by nuser (

)

that registerrpc () handles automatically. The first is that procedure

NULLPROC (currently zero) returns with no results. This can be used as a simple

test for detecting if a remote program is running. Second, there is a check for

invalid procedure numbers. If one is detected, svcerr_noproc () is called to

handle the error.

The user service routine serializes the results and returns them to the RPC caller

via svc_sendreply () . Its first parameter is the SVCXPRT handle, the

second is the XDR routine, and the third is a pointer to the data to be returned.

Note that it is not required to have nuser s declared as static here because

svc_sendreply () is called within that function itself. Not illustrated above

is how a server handles an RPC program that receives data. As an example, we

can add a procedure RUSERSPROC_BOOL, which has an argument nuser s ()

,

and returns TRUE or FALSE depending on whether there are nusers logged on. It

would look like this:

C
'

case RUSERSPROC_BOOL: {

int bool;
unsigned nuserquery;

if (! svc_getargs (transp, xdr_u_int, finuserquery) {

v -

sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 75

More on the Client Side

svcerr_decode (transp)

;

return;

}

/*

* Code to set nusers = number ofusers
*/

if (nuserquery == nusers)
bool = TRUE;

else
bool = FALSE;

if (! svc_sendreply (transp, xdr_bool, Sbool)

)

fprintf (stderr, "can't reply to RPC call\n");
return;

}

V ,

The relevant routine is svc_getargs () , which takes an SVCXPRT handle, the

XDR routine, and a pointer to where the input is to be placed as arguments.

When you use callrpc () ,
you have no control over the RPC delivery

mechanism or the socket used to transport the data. To illustrate the layer of

RPC that lets you adjust these parameters, consider the following code to call the

nusers service:

include <stdio.h>
include <rpc/rpc.h>
include <rpcsvc/rusers . h>
include <sys/time.h>
include <netdb.h>

main(argc, argv)

int argc;
char **argv;

{

struct hostent *hp;

struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
unsigned long nusers;

if (argc != 2) {

fprintf (stderr, "usage: nusers hostname\n")

;

exit (-1)

;

)

if ((hp = gethostbyname (argv [1]))
== NULL) {

fprintf (stderr, "can't get addr for %s\n", argv [1])

;

exit (-1)

;

}

pertry_timeout . tv_sec = 3;

pertry_timeout . tv_usec = 0;

m sun
microsystems

Revision A, of 27 March 1990

76 Network Programming

bcopy (hp->h_addr, (caddr_t) &server_addr . sin_addr,
hp->h_length)

;

server_addr . sin_family = AF_INET;

server_addr . sin_port = 0;

if ((client = clntudp_create (&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout , Ssock))
== NULL) {

clnt_pcreateerror ("clntudp_create")

;

exit (-1)

;

}

total_timeout . tv_sec = 20;

total_timeout . tv_usec = 0;

clnt_stat = clnt_call (client, RUSERSPROC_NUM, xdr_void,

0, xdr_u_long, Snusers, total_timeout)

;

if (clnt_stat != RPC_SUCCESS) (

clnt_perror (client, "rpc");

exit (-1)

;

}

printf("%d users on %s\n", nusers, argv[l]);

clnt_destroy (client)

;

exit (0)

;

The CLIENT pointer is encoded with the transport mechanism, callrpc (

)

uses UDP, thus it calls clntudp_create () to get a CLIENT pointer. To get

TCP you would use clnttcp_create ()

.

The parameters to clntudp_create () are the server address, the program

number, the version number, a timeout value (between tries), and a pointer to a

socket. Only when the sin_port is 0, the remote portmapper is queried to find

out the address of the remote service.

The low-level version of callrpc () is clnt_call () , which takes a

CLIENT pointer rather than a host name. The parameters to clnt_call () are

a CLIENT pointer, the procedure number, the XDR routine for serializing the

argument, a pointer to the argument, the XDR routine for deserializing the return

value, a pointer to where the return value will be placed, and the time in seconds

to wait for a reply. If the client does not hear from the server within the time

specified in pertry_t imeout , the request may be sent again to the server.

Thus, the number of tries that the clnt_call () will make to contact the

server is the clnt_call () timeout divided by the clntudp_create (

)

timeout.

Note that the clnt_destroy () call always deallocates the space associated

with the CLIENT handle. It closes the socket associated with the CLIENT han-

dle only if the RPC library opened it. It the socket was opened by the user, it

stays open. This makes it possible, in cases where there are multiple client han-

dles using the same socket, to destroy one handle without closing the socket that

other handles are using.

To make a stream connection, the call to clntudp_create () is replaced

with clnttcp_create ()

.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 77

clnttcp_create (&server_addr, prognum, versnum, &sock,
inbufsize, outbufsize)

;

There is no timeout argument; instead, the receive and send buffer sizes must be

specified. When the clnttcp_create () call is made, a TCP connection is

established. All RPC calls using that CLIENT handle would use this connection.

The server side of an RPC call using TCP has svcudp_create () replaced by

svctcp_create ()

.

/•
—

\

transp = svctcp_create (RPC_ANYSOCK, 0, 0)

;

V >

The last two arguments to svctcp_create () are send and receive sizes

respectively. If ‘0’ is specified for either of these, the system chooses default

values.

The simplest routine to create a client handle is clnt_create ()

.

— s

clnt = clnt_create (server_host, prognum, versnum, transport) ;

V J

The parameters are the name of the host on which the service resides, the pro-

gram and version number and the transport to be used. The transport can be

either “udp” for UDP or “tcp” for TCP. It is possible to change the default

timeouts using clnt_control () . For more details look under Client Pro-

gramming Notes section in rpcgen Programming Guide

.

Memory Allocation with XDR XDR routines not only do input and output, they may also do memory allocation.

This is why the second parameter of xdr_array () is a pointer to an array,

rather than the array itself. If it is NULL, then xdr_array () allocates space

for the array and returns a pointer to it, putting the size of the array in the third

argument. As an example, consider the following XDR routine

xdr_chararrl () , which deals with a fixed array of bytes with length SIZE:

If space has already been allocated in chararr, it can be called from a server like

this:

#sun
\r microsystems

Revision A, of 27 March 1990

78 Network Programming

If you want XDR to do the allocation, you would have to rewrite this routine in

the following way:

Then the RPC call might look like this:

Note that, after being used, the character array can be freed with

svc_freeargs () . svc_freeargs () will not attempt to free any memory
if the variable indicating it is NULL. For example, in the the routine

xdr_finalexample () ,
given earlier, if finalp->string was NULL,

then it would not be freed. The same is true for finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing, and

freeing memory. When an XDR routine is called from callrpc () , the serial-

izing part is used. When called from svc_getargs () , the deserializer is used.

And when called from svc_freeargs () , the memory deallocator is used.

When building simple examples like those in this section, a user doesn’t have to

worry about the three modes. See the External Data Representation: Sun Techn-

ical Notes chapter for examples of more sophisticated XDR routines that deter-

mine which of the three modes they are in and adjust their behavior accordingly.

4.2. Raw RPC Finally, there are two pseudo-RPC interface routines which are intended only for

testing purposes. These routines, clntraw_create () and

svcraw_create () , don’t actually involve the use of any real transport at all.

They exist to help the developer debug and test the non-communications oriented

aspects of their application before running it over a real network. Here’s an

example of their use:

fsunV microsystems
Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 79

/*

* A simple program to increment the number by 1

*1

include <stdio.h>
include <rpc/rpc.h>
include <rpc/raw.h> /* requiredfor raw */

struct timeval TIMEOUT = {0, 0};

static void server!);

main (

)

{

CLIENT *clnt;
SVCXPRT *svc;

int num = 0, ans;

if (argc == 2)

num = atoi (argv [1])

;

svc = svcraw_create ()

;

if (svc == NULL) {

fprintf (stderr, "Couldnot create server handle\n") ;

exit (1) ;

)

svc_register (svc, 200000, 1, server, 0);

clnt = clntraw_create (200000, 1)

;

if (clnt == NULL) (

clnt_pcreateerror ("raw")

;

exit (1)

;

)

if (clnt_call (clnt, 1, xdr_int, Snum, xdr_int, &numl,
TIMEOUT) ! = RPC_SUCCESS) {

clnt_perror (clnt, "raw");
exit (1)

;

)

printf ("Client : number returned %d\n", numl);
exit (0) ;

}

static void
server (rqstp, transp)

struct svc_req * rqstp;
SVCXPRT *transp;

(

int num;

switch (rqstp->rq_proc) (

case 0:

if (svc_sendreply (transp, xdr_void, 0) == NULL) {

fprintf (stderr, "error in null proc\n");
exit (1) ;

)

return;
case 1:

m sunV microsystems
Revision A, of 27 March 1990

80 Network Programming

Note the following points:

1 . All the RPC calls occur within the same thread of control.

2. svc_run () is not called.

3. It is necessary that the server be created before the client.

4. svcraw_create () takes no parameters.

5. The last parameter to svc_register is 0, which means that it will not

register with portmapper.

6. The server dispatch routine is the same as it is for normal RPC servers.

4.3. Other RPC Features This section discusses some other aspects of RPC that are useful for the RPC
programmer.

Select on the Server Side Suppose a process is processing RPC requests while performing some other

activity. If the other activity involves periodically updating a data structure, the

process can set an alarm signal before calling svc_run () . But if the other

activity involves waiting on a a file descriptor, the svc_run () call won’t work.

The code for svc run () is as follows:

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 8

1

Broadcast RPC

You can bypass svc_run () and call svc_getreqset () yourself. All you

need to know are the file descriptors of the socket(s) associated with the pro-

grams you are waiting on. Thus you can have your own select () that waits

on both the RPC socket, and your own descriptors. Note that svc_fds is a bit

mask of all the file descriptors that RPC is using for services. It can change

everytime that any RPC library routine is called, because descriptors are con-

stantly being opened and closed, for example for TCP connections.

Caution: if you are handling signals in your application, then either make sure

that you do not make any system calls and inadvertently set errno or reset

errno to its old value before returning from your signal handler.

The portmapper is a daemon that converts RPC program numbers into DARPA
protocol port numbers; see The Portmapper section in the Network Services

chapter. You can’t do broadcast RPC without the portmapper. Here are the main

differences between broadcast RPC and normal RPC:

1 . Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answer from each responding server).

2. Broadcast RPC can only be supported by packet-oriented (connectionless)

transport protocols like UDP/IP.

3. The implementation of broadcast RPC treats all unsuccessful responses as

garbage by filtering them out. Thus, if there is a version mismatch between

the broadcaster and a remote service, the user of broadcast RPC never

knows.

4. All broadcast messages are sent to the portmap port. Thus, only services

that register themselves with their portmapper are accessible via the broad-

cast RPC mechanism.

5. Broadcast requests are limited in size to 1400 bytes. Replies can be up to

8800 bytes (the current maximum UDP packet size).

Revision A, of 27 March 1990

82 Network Programming

Broadcast RPC Synopsis

Batching

include <rpc/pmap_clnt . h>

enum clnt stat clnt stat;

clnt stat = clnt broadcast (prognum, versnum, procnum.
inproc, in, outproc, out. eachresult)

u_long prognum; /* program number */

u long versnum; / * version number * /

u_long procnum; / * procedure number * /

xdrproc_t inproc; /* xdr routinefor args */

caddr_t in; /* pointer to args */

xdrproc_t outproc; / * xdr routinefor results * /

caddr t out; / * pointer to results * /

bool_t (*eachresult) () ; /* call with each result gotten */

k / /

The procedure eachresult () is called each time a response is obtained. It

returns a boolean that indicates whether or not the user wants more responses.

^

bool_t done;

done = eachresult (resultsp, raddr)

caddr_t resultsp;
struct sockaddr_in *raddr; /* Addr of responding server */

v ,

If done is TRUE, then broadcasting stops and clnt_broadcast () returns

successfully. Otherwise, the routine waits for another response. The request is

rebroadcast after a few seconds of waiting. If no responses come back in a

default total timeout period, the routine returns with rpc_timedout. You
may also refer to Handling Broadcast on the Server Side section in the rpcgen
Programming Guide chapter

.

In normal RPC clients send a call message and wait for the server to reply that

the call succeeded. This implies that clients do not compute while servers are

processing a call. This is inefficient if the client does not want or need an ack-

nowledgement for every message sent. Actually calls made by clients are buf-

fered, thus causing no processing on the servers. When the connection is flushed,

a normal RPC request is sent. The server processes the request and sends the

reply back.

RPC messages can be placed in a “pipeline” of calls to a desired server; this is

called batching. Batching assumes that:

1. Each RPC call in the pipeline requires no response from the server, and the

server does not send a response message.

2. The pipeline of calls is transported on a reliable byte stream transport such

as TCP/IP.

4Mun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 83

Since the server does not respond to every call, the client can generate new calls

in parallel with the server executing previous calls. Furthermore, the TCP/IP

implementation can buffer up many call messages, and send them to the server in

one write () system call. This overlapped execution greatly decreases the

interprocess communication overhead of the client and server processes, and the

total elapsed time of a series of calls.

Since the batched calls are buffered, the client should eventually do a nonbatched

call in order to flush the pipeline.

A contrived example of batching follows. Assume a string rendering service

(like a window system) has two similar calls: one renders a string and returns

void results, while the other renders a string and remains silent. The service

(using the TCP/IP transport) may look like:

—
include <stdio.h>
include <rpc/rpc.h>
include <suntool/windows . h>

void windowdispatch ()

;

main ()

{

SVCXPRT *transp;

transp = svctcp_create (RPC_ANYSOCK, 0, 0) ;

if (transp == NULL)

{

fprintf (stderr, "can't create an RPC server\n")

;

exit (1)

;

}

pmap_unset (WINDOWPROG, WINDOWVERS)

;

if (! svc_register (transp, WINDOWPROG, WINDOWVERS,
windowdispatch, IPPROTO_TCP)) {

fprintf (stderr, "can't register WINDOW service\n");
exit (1)

;

}

svc_run () ; / * Never returns * /

fprintf (stderr, "should never reach this point\n")

;

void
windowdispatch (rqstp, transp)

struct svc_req * rqstp;
SVCXPRT *transp;

{

char *s = NULL;

switch (rqstp->rq_proc) {

case NULLPROC:
if (! svc_sendreply (transp, xdr_void, 0))

fprintf (stderr, "can't reply to RPC call\n");
return;

case RENDERSTRING:

sun
microsystems

Revision A, of 27 March 1990

84 Network Programming

if (! svc_getargs (transp, xdr_wrapstring, &s)

)

{

fprintf (stderr, "can't decode arguments\n")

;

/*

* Tell caller he screwed up
*1

svcerr_decode (transp) ;

return;

)

/*

* Code here to render the string s

*/

if (! svc_sendreply (transp, xdr_void, NULL))
fprintf (stderr, "can't reply to RPC call\n")

;

break;
case RENDERSTRING_BATCHED:

if (! svc_getargs (transp, xdr_wrapstring, &s)

)

{

fprintf (stderr, "can't decode arguments\n")

;

/*

* We are silent in theface ofprotocol errors

*1

break;

}

I*

* Code here to render string s, but send no reply!

*/

break;
default

:

svcerr_noproc (transp)

;

return;

)

/*

* Nowfree string allocated while decoding arguments

*1

svc_freeargs (transp, xdr_wrapstring, &s)

;

}

>•

Of course the service could have one procedure that takes the string and a

boolean to indicate whether or not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC
calls on a TCP-based transport and the actual calls must have the following attri-

butes:

1. the result’s XDR routine must be zero (NULL),

2. the RPC call’s timeout must be zero. Do not rely on clnt_control () to

assist in batching.

If a UDP transport is used instead, the client call becomes a message to the server

and the RPC mechanism reduces to a message passing system. No batching is

possible here.

Here is an example of a client that uses batching to render a bunch of strings; the

batching is flushed when the client gets a null string (EOF):

Ife-sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 85

include <stdio.h>
include <rpc/rpc.h>
include <suntool/windows . h>

main(argc, argv)
int argc;

char **argv;

{

struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create (argv[l]

,

WINDOWPROG, WINDOWVERS, "tcp")) == NULL) {

perror ("clnttcp_create")

;

exit (-1)

;

}

total_timeout . tv_sec = 0; /* set timeout to zero */

total_timeout . tv_usec = 0;

while (scanf("%s", s) != EOF) {

clnt_stat = clnt_call (client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout)

;

if (clnt_stat != RPC_SUCCESS) {

clnt_perror (client, "batching rpc");
exit (-1)

;

}

}

/ * Nowflush the pipeline * /

total_timeout . tv_sec = 20;

clnt_stat = clnt_call (client, NULLPROC, xdr_void, NULL,
xdr_void, NULL, total_timeout)

;

if (clnt_stat != RPC_SUCCESS) {

clnt_perror (client, "batching rpc");
exit (-1)

;

}

clnt_destroy (client)

;

exit (0)

;

}

V y

Since the server sends no message, the clients cannot be notified of any of the

failures that may occur. Therefore, clients are on their own when it comes to

handling errors.

The above example was completed to render all of the (2000) lines in the file

/etc/termcap. The rendering service did nothing but throw the lines away. The
example was run in the following four configurations:

1. machine to itself, regular RPC — 50 seconds

Revision A, of 27 March 1990

86 Network Programming

Authentication

UNIX Authentication

2. machine to itself, batched RPC — 16 seconds

3. machine to another, regular RPC — 52 seconds

4. machine to another, batched RPC — 10 seconds

Running only f scanf () on /etc/termcap requires six seconds. These tim-

ings show the advantage of protocols that allow for overlapped execution, though

these protocols are often hard to design.

In the examples presented so far, the caller never identified itself to the server,

and the server never required an ID from the caller. Clearly, some network ser-

vices, such as a network filesystem, require stronger security than what has been

presented so far.

In reality, every RPC call is authenticated by the RPC package on the server, and

similarly, the RPC client package generates and sends authentication parameters.

Just as different transports (TCP/IP or UDP/IP) can be used when creating RPC
clients and servers, different forms of authentication can be associated with RPC
clients; the default authentication type used as a default is type none.

The authentication subsystem of the RPC package is open ended. That is,

numerous types of authentication are easy to support.

The Client Side

When a caller creates a new RPC client handle as in:

f
>

clnt = clntudp_create (address, prognum, versnum,
wait, sockp)

>. /

the appropriate transport instance defaults the associate authentication handle to

be

A

clnt->cl_auth = authnone_create ()

;

v y

The RPC client can choose to use UNIX style authentication by setting

clnt->cl_auth after creating the RPC client handle:

\

clnt->cl_auth = authunix_create_default ()

;

V

This causes each RPC call associated with clnt to carry with it the following

authentication credentials structure:

Asun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 87

/*

* UNIX style credentials.

*/

struct authunix_parms {

u_long aup_time; /* credentials creation time * /

char * aup__machname

;

/* host name where client is * /

int aup_uid; /* client’s UNIX effective uid * /

int aup_gid; /* client’ s current group id * /

u_int aup_len; /* element length ofaup gids */

int *aup_gids; /* array ofgroups user is in * /

} ;

v

These fields are set by authunix_create_default () by invoking the

appropriate system calls. Since the RPC user created this new style of authenti-

cation, the user is responsible for destroying it with:

/ ..

auth_destroy (clnt->cl_auth) ;

v t

This should be done in all cases, to conserve memory.

The Server Side

Service implementors have a harder time dealing with authentication issues since

the RPC package passes the service dispatch routine a request that has an arbi-

trary authentication style associated with it. Consider the fields of a request han-

dle passed to a service dispatch routine:

/*

* An RPC Service request

*1

struct svc_req {

u_long rq_prog;
u_long rq_vers;
u_long rg proc;
struct opaque_auth rq_cred;
caddr_t rq_clntcred;

/ * service program number * /

/ * service protocol vers num * /

/ * desired procedure number * /

/ * raw credentialsfrom wire * /

/* credentials (read only) */

The rq_cred is mostly opaque, except for one field of interest: the style or

flavor of authentication credentials:

©sunV microsystems
Revision A, of 27 March 1990

88 Network Programming

* Authentication info. Mostly opaque to the programmer.
*1

struct opaque_auth {

enum_t oa_flavor; /* style ofcredentials */

caddr_t oa_base; /* address ofmore auth stuff */

u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

} ;

The RPC package guarantees the following to the service dispatch routine:

1. That the request’s rq_cred is well formed. Thus the service implementor

may inspect the request’s rq_cred . oa_flavor to determine which style

of authentication the caller used. The service implementor may also wish to

inspect the other fields of rq_cred if the style is not one of the styles sup-

ported by the RPC package.

2. That the request’s rq_clntcred field is either NULL or points to a well

formed structure that corresponds to a supported style of authentication

credentials. rq_clntcred could be cast to a pointer to an

authunix_parms structure. If rq_clntcred is NULL, the service

implementor may wish to inspect the other (opaque) fields of rq_cred in

case the service knows about a new type of authentication that the RPC
package does not know about.

Our remote users service example can be extended so that it computes results for

all users except UID 16:

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

1

struct authunix_j3arms *unix_cred;
int uid;
unsigned long nusers;

* we don’t care about authenticationfor null proc
*/

if (rqstp->rq proc == NULLPROC) {

if (! svc_sendreply (transp, xdr_void, 0))

fprintf (stderr, "can't reply to RPC call\n");
return;

1

/*

* now get the uid

*/

switch (rqstp->rq_cred. oa_flavor) {

case AUTH_UNIX:
unix_cred =

(struct authunix_parms *) rqstp->rq_clntcred;
uid = unix_cred->aup_uid;

A sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 89

DES Authentication

break;
case AUTH_NULL:
default: /* return weak authentication error */

svcerr_weakauth (transp)

;

return;

}

switch (rqstp->rq_proc) {

case RUS ERSPROC_NUM

:

/*

* make sure caller is allowed to call this proc

*1

if (uid == 16) {

svcerr_systemerr (transp) ;

return;

}

I*

* Code here to compute the number ofusers

* and assign it to the variable nusers
*/

if (! svc_sendreply (transp, xdr_u_long, Snusers)

)

fprintf (stderr, "can't reply to RPC call\n");
return;

default

:

svcerr_noproc (transp)

;

return;

)

}

A few things should be noted here. First, it is customary not to check the authen-

tication parameters associated with the NULLPROC (procedure number zero).

Second, if the authentication parameter’s type is not suitable for your service,

you should call svcerr_weakauth () . And finally, the service protocol itself

should return status for access denied; in the case of our example, the protocol

does not have such a status, so we call the service primitive

svcerr_systemerr () instead.

The last point underscores the relation between the RPC authentication package

and the services; RPC deals only with authentication and not with individual ser-

vices’ access control. The services themselves must implement their own access

control policies and reflect these policies as return statuses in their protocols.

UNIX authentication can be defeated, which we won’t explain here. Therefore

DES authentication is recommended for people who want more security than

what UNIX authentication offers. The details of the DES authentication protocol

are complicated and are not explained here. Please see the Remote Procedure

Calls: Protocol Specification section for the details.

In order for DES authentication to work, the keyserv (8c) daemonmustbe

running on both the server and client machines. The users on these machines

need public keys assigned by the network administrator in the pub-
lickey (5) database. And, they need to have decrypted their secret keys

using their login password. This automatically happens when one logs in

Revision A, of 27 March 1990

using login (1)

,

or can be done manually using keylogin (1)

.

The Net-

work Services chapter of Network Programming explains more how to setup

secure networking.

Client Side

If a client wishes to use DES authentication, it must set its authentication handle

appropriately. Here is an example:

The first argument is the network name or “netname” of the owner of the server

process. Typically, server processes are root processes and their netname can be
derived using the following call:

Here, rhostname is the hostname of the machine the server process is running on.

host2netname () fills in servername to contain this root process’s netname.

If the server process was run by a regular user, one could use the call

user2netname () instead. Here is an example for a server process with the

same user ID as the client:

The last argument to both of these calls, user 2netname () and

host2netname () , is the name of the naming domain where the server is

located. The null used here means “use the local domain name.”

The second argument to authdes_create () is a lifetime for the credential.

Here it is set to sixty seconds. What that means is that the credential will expire

60 seconds from now. If a user tries to reuse the credential, the server RPC sub-

system will recognize that it has expired and not grant any requests. If the same
user tries to reuse the credential within the sixty second lifetime, he will still be
rejected because the server RPC subsystem remembers which credentials it has

already seen in the near past, and will not grant requests to duplicates.

The third argument to authdes_create () is the address of the host to syn-

chronize with. In order for DES authentication to work, the server and client

must agree upon the time. Here we pass the address of the server itself, so the

client and server will both be using the same time: the server’s time. The argu-

ment can be NULL, which means “don’t bother synchronizing.” You should only

do this if you are sure the client and server are already synchronized.

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 9

1

The final argument to authdes_create () is the address of a DES encryption

key to use for encrypting timestamps and data. If this argument is NULL, as it is

in this example, a random key will be chosen. The client may find out the

encryption key being used by consulting the ah_key field of the authentication

handle.

Server Side

The server side is a lot simpler than the client side. Here is the previous example

rewritten to use AUTH_DES instead of AUTH_UNIX:_ '

#include <sys/time.h>
#include <rpc/auth_des . h>

nuser(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{

struct authdes_cred *des_cred;
int uid;

int gid;

int gidlen;
int gidlist[10];
/*

* we don't care about authenticationfor null proc

*1

if (rqstp->rq_j>roc == NULLPROC) {

/* same as before */

)

* now get the uid

*1

switch (rqstp->rq_cred. oa_flavor) {

case AUTH_DES:
des_cred =

(struct authdes_cred *) rqstp->rq_clntcred;
if (! netname2user (des_cred->adc_fullname . name,

&uid, &gid, Sgidlen, gidlist)) {

fprintf (stderr, "unknown user: %s\n",
des_cred->adc_fullname . name)

;

svcerr_systemerr (transp)

;

return;

)

break;
case AUTH_NULL:
default

:

svcerr_weakauth (transp)

;

return;

W sun
microsystems

Revision A, of 27 March 1990

92 Network Programming

Using Inetd

4.4. More Examples

Versions on Server Side

/
/*

* The rest is the same as before

*/

V J

Note the use of the routine netname2user () , the inverse of

user 2 net name () : it takes a network ID and converts to a unix ID.

netname2user () also supplies the group IDs which we don’t use in this

example, but which may be useful to other UNIX programs.

An RPC server can be started from inetd. The only difference from the usual

code is that the service creation routine should be called in the following form:

f “ >

transp = svcudp_create (0) ; /* ForUDP */

transp = svctcp_create (0, 0, 0)

;

/* For listener TCP sockets */
transp = svcfd_create (0, 0, 0) ; /* For connected TCP sockets */

v ___
since inetd passes a socket as file descriptor 0. Also, svc_register (

)

should be called as

svc_register (transp, PROGNUM, VERSNUM, service, 0)

;

k

with the final flag as 0, since the program would already be registered with

portmapper by inetd. Remember that if you want to exit from the server

process and return control to inetd, you need to explicitly exit, since

svc_run () never returns.

The format of entries in / etc/ inetd. conf for RPC services is in one of the

following two forms:

p_name/version dgram rpc/udp wait/nowait user server args
p_name/version stream rpc/tcp wait/nowait user server args

where pjiame is the symbolic name of the program as it appears in rpc (5)

,

server is the program implementing the server, and program and version are the

program and version numbers of the service. For more information, see

inetd. conf (5)

.

If the same program handles multiple versions, then the version number can be a

range, as in this example:

rstatd/l-2 dgram rpc/udp wait root /usr/etc/rpc . rstatd

By convention, the first version number of program PROG is PROGVERS_ORlG
and the most recent version is PROGVERS. Suppose there is a new version of the

user program that returns an unsigned short rather than a long. If we
name this version RUSERSVERS_SHORT, then a server that wants to support

both versions would do a double register. Note that there is no need to create

another server handle for the new version.

®sun
micmci/ctomcmicrosystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 93

.

if (! svc_register (transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO_TCP)) {

fprintf (stderr, "can't register RUSER service\n")

;

exit (1)

;

1

if (! svc_register (transp, RUSERSPROG, RUSERSVERS_SHORT,
nuser, IPPROTO_TCP)) {

fprintf (stderr, "can't register new service\n")

;

exit (1)

;

1

v

Both versions can be handled by the same C procedure:

nuser (rqstp, transp)
struct svc_req * rqstp;
SVCXPRT *transp;

{

unsigned long nusers;
unsigned short nusers2;

switch (rqstp->rq__proc) {

case NULLPROC:
if (! svc_sendreply (transp, xdr_void, 0)) {

fprintf (stderr, "can't reply to RPC call\n")

;

return;

1

return;
case RUSERSPROC_NUM:
/*

* Code here to compute the number ofusers

* and assign it to the variable nusers
*/

nusers2 = nusers;
switch (rqstp->rq_vers) {

case RUSERSVERS_ORIG

:

if (! svc_sendreply (transp, xdr_u_long,
Snusers)) {

fprintf (stderr, "can't reply to RPC call\n") ;

1

break;
case RUSERSVERS_SHORT

:

if (! svc_sendreply (transp, xdr_u_short,
&nusers2)) {

fprintf (stderr, "can't reply to RPC call\n")

;

1

break;

1

default

:

svcerr_noproc (transp) ;

return;

1

sun
microsystems

Revision A, of 27 March 1990

94 Network Programming

Versions on Client Side Since different machines may run different versions of the RPC servers, the

client should be prepared to deal with the world. It is possible to have one server

running with the old version of RUSERSPROG (RUSERSVERS_ORlG) while

another server is running with the newer version (RUSERSVERS_SHORT)

.

If the version of the server running does not match with the version number in

the client create routines, then clnt_call fails with

RPCPROGVERSMISMATCH error. You can find out the version numbers sup-

ported by the server and then create a client handle with an appropriate version

number. Either the routine below can be used, or clnt_create_vers ()

.

See the rpc (3N) manual page for more details.

main (

)

{

enum clnt_stat status;
u_sho rt num_s

;

u_int num_l;
struct rpc_err rpcerr;
int maxvers, minvers;

clnt = clnt_create (host, RUSERSPROG,
RUSERSVERS_SHORT , "udp");

if (clnt == NULL) {

clnt_pcreateerror ("clnt")

;

exit (-1)

;

}

to.tv_sec = 10; /* set the time outs */

to.tv_usec =0;
status = clnt_call (clnt, RUSERSPROC_NUM,

xdr_void, NULL, xdr_u_short, &num_s, to)

;

if (status == RPC_SUCCESS) {

/ * Wefound the latest version number * /

clnt_destroy (clnt)

;

printfC'num = %d\n", num_s) ;

exit (0)

;

}

if (status ! = RPC_PROGVERSMI SMATCH) {

/ * Some other error * /

clnt_perror (clnt, "rusers")

;

exit (-1)

;

clnt_geterr (clnt, Srpcerr)

;

maxvers = rpcerr . re_vers . high; /* highest version supported */

minvers = rpcerr. re_vers.low; / * lowest version supported * /

if (RUSERSVERS_ORIG < minvers
|

|

RUSERS_ORIG > maxvers) {

/* doesn’ t meet minimum standards */

clnt_jperror (clnt, "version mismatch");
exit (-1)

;

» sun
r microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 95

/* This version not supported */

clnt_destroy (clnt) ; /* destroy the earlier handle */

clnt = clnt_create (host, RUSERSPROG,
RUSERSVERS_ORlG, "udp"); /* try different version */

if (clnt == NULL) {

clnt_pcreateerror ("clnt")

;

exit (-1)

;

}

status = clnt_call (clnt, RUSERSPROCNUM,
xdr_void, NULL, xdr_u_long, &num_l, to)

;

if (status == RPC_SUCCESS) {

/ * Wefound the latest version number * /

printf("num = %d\n", num_l)

;

} else {

clnt_perror (clnt, "rusers")

;

exit (-1)

;

1

}

v ,

TCP Here is an example that is essentially rep. The initiator of the RPC snd call

takes its standard input and sends it to the server rev, which prints it on standard

output. The RPC call uses TCP. This also illustrates an XDR procedure that

behaves differently on serialization than on deserialization.

' —
/*

* The xdr routine:

* on decode, readfrom wire, write ontofp
* on encode, readfrom fp, write onto wire

*/

#include <stdio.h>
include <rpc/rpc.h>

xdr_rcp (xdrs, fp)

XDR *xdrs;
FILE *fp;

{

unsigned long size;
char buf [BUFSIZ] , *p;

if (xdrs->x_op == XDR_FREE)/* nothing to free */

return 1;

while (1) {

if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread(buf, sizeof (char) , BUFSIZ,
fp))

== 0 && ferror(fp)) {

fprintf (stderr, "can't fread\n");
return (1)

;

}

1

p = buf;

if (! xdr_bytes (xdrs, &p, &size, BUFSIZ))

m sun
\r microsystems

Revision A, of 27 March 1990

96 Network Programming

return (0);

if (size == 0)

return (1)

;

if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof (char) , size,

fp) != size) {

fprintf (stderr, "can't fwrite\n")

;

return (1)

;

* The sender routines

*1

include <stdio.h>
include <netdb.h>
include <rpc/rpc.h>
include <sys/socket . h>

include "rcp.h" /* for prog, vers definitions */

main(argc, argv)

int argc;
char **argv;

{

int xdr_rcp();
int err;

if (argc < 2) {

fprintf (stderr, "usage: %s servername\n" , argv[0]);
exit (-1) ;

}

if ((err = callrpctcp (argv [1] , RCPPROG, RCPPROC,
RCPVERS, xdr_rcp, stdin, xdr_void, 0) > 0)) (

clnt_perrno (err)

;

fprintf (stderr, "can't make RPC call\n")

;

exit (1)

;

}

exit (0)

;

callrpctcp (host, prognum, procnum, versnum,
inproc, in, outproc, out)

char *host, *in, *out;

xdrproc_t inproc, outproc;

{

struct sockaddr_in server_addr;
int socket = RPC_ANYSOCK;
enum clnt_stat clnt_stat;
struct hostent *hp;

m sunV microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 97

register CLIENT *client;
struct timeval total_timeout;

if ((hp = gethostbyname (host))
== NULL) {

fprintf (stderr, "can't get addr for '%s'\n", host);
return (-1);

}

bcopy (hp->h_addr, (caddr_t) &server_addr . sin_addr,
hp->h_length)

;

server_addr . sin_family = AF_INET;
server_addr . sin_port = 0;

if ((client = clnttcp_create (&server_addr, prognum,
versnum, Ssocket, BUFSIZ, BUFSIZ))

== NULL) {

clnt_createerror ("rpctcp_create")

;

return (-1);

}

total_timeout . tv_sec = 20;

total_timeout . tv_usec = 0;

clnt_stat = clnt_call (client, procnum,
inproc, in, outproc, out, total_timeout)

;

clnt_destroy (client)

;

return ((int)clnt stat)

;

* The receiving routines

*/

include <stdio.h>
include <rpc/rpc.h>
include "rcp.h" /* for prog, vers definitions */

main (

)

{

register SVCXPRT *transp;
int rcp_service () , xdr_rcp ()

;

if ((transp = svctcp_create (RPC_ANYSOCK,
BUFSIZ, BUFSIZ)) == NULL) {

fprintf ("svctcp_create: error\n")

;

exit (1)

;

)

pmap_unset (RCPPROG, RCPVERS)

;

if (! svc_register (transp, RCPPROG,
RCPVERS, rcp_service, IPPROTO_TCP)) {

fprintf (stderr, "svc_register : error\n");
exit (1) ;

}

svc_run(); /* never returns */

fprintf (stderr, "svc_run should never return\n");

Revision A, of 27 March 1990

98 Network Programming

rcp_service (rqstp, transp)

register struct svc_req *rqstp;

register SVCXPRT *transp;

{

switch (rqstp->rcLJ?roc) {

case NULLPROC:
if (svc_sendreply (transp, xdr_void, 0) == 0)

fprintf (stderr, "err: rcp_service")

;

return;
case RCPPROC_FP

:

if (! svc_getargs (transp, xdr_rcp, stdout)) {

svcerr_decode (transp)

;

return;

}

if (! svc_sendreply (transp, xdr_void, 0))

fprintf (stderr, "can't reply\n")

;

return;
default

:

svcerr_noproc (transp)

;

return;

}

}

Callback Procedures Occasionally, it is useful to have a server become a client, and make an RPC call

back to the process which is its client. An example is remote debugging, where

the client is a window system program, and the server is a debugger running on

the remote machine. Most of the time, the user clicks a mouse button at the

debugging window, which converts this to a debugger command, and then makes

an RPC call to the server (where the debugger is actually running), telling it to

execute that command. However, when the debugger hits a breakpoint, the roles

are reversed, and the debugger wants to make an rpc call to the window program,

so that it can inform the user that a breakpoint has been reached.

Another case when callback can be useful is when the client cannot block waiting

to hear back from the server (possibly because of the huge amount of processing

involved in serving the request). In such cases, the server would first ack-

nowledge the request and then use callback to reply.

In order to do an RPC callback, you need a program number to make the RPC
call on. Since this will be a dynamically generated program number, it should be

in the transient range, 0x4 0000000 - OxSfffffff. The routine get-
transient () returns a valid program number in the transient range, and regis-

ters it with the portmapper. It only talks to the portmapper running on the same

machine as the gettransient () routine itself. The call to pmap_set () is

a test and set operation, in that it indivisibly tests whether a program number has

already been registered, and if it has not, then reserves it.

f
include <stdio.h>
include <rpc/rpc.h>

-J

sun
microsystems

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 99

/ ; —
gettransient (proto, vers, portnum)

int proto;
u_long vers;
u_short portnum;

{

static u_long prognum = 0x40000000;

while (
!
pmap_set (prognum++, vers, proto, portnum))

continue;
return (prognum - 1);

1

s ___
NOTE The call to ntohs () for portnum is not necessary because it was already

passed in host byte order (as pmap_set () expects). See the

byteorder (3N) man pagefor more details on the conversion of network

addressesfrom network to host byte order.

The following pair of programs illustrate how to use the gettransient (

)

routine. The client makes an RPC call to the server, passing it a transient pro-

gram number. Then the client waits around to receive a callback from the server

at that program number. The server registers the program EXAMPLEPROG, so

that it can receive the RPC call informing it of the callback program number.
Then at some random time (on receiving an ALRM signal in this example), it

sends a callback RPC call, using the program number it received earlier.

In this example, both the client and the server are on the same machine, they

could very well be on different machines— in that case the handling of the host-

name would be different.

' n

I*

* client

*/

include <stdio.h>
include <rpc/rpc.h>
include "example. h"

int callback ();

main (

)

{

int tmp_prog;
char hostname [256] ;

SVCXPRT *xprt;
int stat;

gethostname (hostname, sizeof (hostname))

;

if ((xprt = svcudp_create (RPC_ANYSOCK))
== NULL) {

fprintf (stderr, "rpc_server: svcudp_create\n")

;

exit (1)

;

}

if (tmp_prog = gettransient (IPPROTO_UDP, 1,

xprt->xp_port) == 0) {

sun
microsystems

Revision A, of 27 March 1990

100 Network Programming

fprintf (stderr, "failedto get transient number\n") ;

exit (1)

;

}

fprintf (stderr, "client gets prognum %d\n", tmp_prog)

;

I* protocol is 0 - gettransient does registering *1

(void) svc_register (xprt, tmp_prog, 1, callback, 0);

stat = callrpc (hostname, EXAMPLEPROG, EXAMPLEVERS,
EXAMPLEPROC_CALLBACK , xdr_int, &tmp_prog, xdr_void, 0) ;

if (stat ! = RPC_SUCCESS) (

clnt_perrno (stat)

;

exit (1)

;

}

svc_run ()

?

fprintf (stderr, "Error: svc_run shouldn't return\n")

;

callback (rqstp, transp)
register struct svc_req *rqstp?

register SVCXPRT *transp;

{

switch (rqstp->rq_proc) {

case 0:

if (! svc_sendreply (transp, xdr_void, 0)) {

fprintf (stderr, "err: exampleprog\n")

;

return (1);

)

return (0);

case 1:

fprintf (stderr, "client got callback\n")

;

if (! svc_sendreply (transp, xdr_void, 0)) {

fprintf (stderr, "err: exampleprog\n")

;

return (1)

;

)

}

return (0)

;

I*

* server

*1

include <stdio.h>
include <rpc/rpc.h>
include <sys/signal . h>

include "example .
h"

char *getnewprog ()

;

char hostname [256] ;

int docallback () ;

int pnum = -1; /* program numberfor callback routine */

main ()

Revision A, of 27 March 1990

Chapter 4— Remote Procedure Call Programming Guide 101

gethostname (hostname, sizeof (hostname))

;

registerrpc (EXAMP LEPROG, EXAMPLEVERS,
EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void)

;

signal (SIGALRM, docallback)

;

alarm (10) ;

svc_run () ;

fprintf (stderr, "Error: svc_run shouldn't return\n")

;

}

char *

getnewprog (pnump)

int *pnump;

{

pnum = * (int *) pnump;
return NULL;

}

docallback (

)

{

int ans;

if (pnum == -1) {

signal (SIGALRM, docallback)

;

return; / * program number not yet received * /

}

ans = callrpc (hostname, pnum, 1, 1, xdr_void, 0,

xdr_void, 0)

;

if (ans ! = RPC_SUCCESS)
fprintf (stderr, "server: %s\n", clnt_sperrno (ans))

;

}

\

4.5. Futures

Sun currently supports RPC on top of both UDP (datagram) and TCP (circuit

oriented) transports. The RPC library uses sockets API for communicating with

the underlying transport layers.

It is likely that in the future releases, the RPC library will use Transport Layer

Interface (TLI) API for communicating with the underlying protocol layers.

Usage of TLI will help in making RPC transport independent and thus users will

be able to use any TLI conforming transport for communication.

Almost all of the current RPC API will be supported. Exceptions would include

passing of an open socket to the client and server create routines.

One of the ways to have a very smooth transition to transport independent RPC is

to use rpcgen to generate the client and the server skeletons, in addition to not

using any transport specific feature ofUDP and TCP. Code written this way will

not be bound to run only on UDP and TCP, but will be able to run on all tran-

sports of datagram and circuit oriented type. The actual RPC protocol will

#sun
microsystems

Revision A, of 27 March 1990

102 Network Programming

however remain the same.

SU FI Revision A, of 27 March 1990
microsystems

5

External Data Representation: Sun

Technical Notes

This chapter contains technical notes on Sun’s implementation of the External

Data Representation (XDR) standard, a set of library routines that allow a C pro-

grammer to describe arbitrary data structures in a machine-independent fashion.

For a formal specification of the XDR standard, see the External Data Represen-

tation Standard: Protocol Specification. XDR is the backbone of Sun’s Remote

Procedure Call package, in the sense that data for remote procedure calls is

transmitted using the standard. XDR library routines should be used to transmit

data that is accessed (read or written) by more than one type of machine .

7

This chapter contains a short tutorial overview of the XDR library routines, a

guide to accessing currently available XDR streams, and information on defining

new streams and data types. XDR was designed to work across different

languages, operating systems, and machine architectures. Most users (particu-

larly RPC users) will only need the information in the Number Filters, Floating

Point Filters, and Enumeration Filters sections. Programmers wishing to imple-

ment RPC and XDR on new machines will be interested in the rest of the

chapter, as well as the External Data Representation Standard: Protocol

Specification, which will be their primary reference.

NOTE rpegen can be used to write XDR routines even in cases where no RPC calls

are being made.

On Sun systems, C programs that want to use XDR routines must include the file

<rpc/rpc . h>, which contains all the necessary interfaces to the XDR system.

Since the C library libc . a contains all the XDR routines, compile as normal.

example % cc program, c

1 For a complete specification of the system External Data Representation routines, see the xdr (3N

)

manual page.

#sun
microsystems

103 Revision A, of 27 March 1991

104 Network Programming

Justification Consider the following two programs, writer:
/

include <stdio.h>

main() /* writer.

c

*/

{

long i;

N

for (i = 0; i < 8; i++) {

if (fwrite ((char *)&i, sizeof(i), 1,

fprintf (stderr, "failed!\n") ;

exit (1)

;

}

}

exit (0)

;

}

s.

stdout) != 1) {

J

and reader:
r

include <stdio.h>

main() /* reader.c */

{

long i, j;

for (j = 0; j < 8; j++) {

if (fread((char *)&i, sizeof (i) , 1,

fprintf (stderr, "failed! \n") ;

exit (1)

;

}

printf("%ld ", i) ;

}

print f ("\n") ;

exit (0) ;

}

stdin) != 1) {

The two programs appear to be portable, because (a) they pass lint checking,

and (b) they exhibit the same behavior when executed on two different hardware

architectures, a Sun and a VAX.

Piping the output of the writer program to the reader program gives identi-

cal results on a Sun or a VAX.
r

sun% writer
|
reader

01234567
sun%

vax% writer
|
reader

01234567
vax%

V J

With the advent of local area networks and 4.2BSD came the concept of “net-

work pipes”— a process produces data on one machine, and a second process

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 105

consumes data on another machine. A network pipe can be constructed with

writer and reader. Here are the results if the first produces data on a Sun,

and the second consumes data on a VAX.

Identical results can be obtained by executing writer on the VAX and

reader on the Sun. These results occur because the byte ordering of long

integers differs between the VAX and the Sun, even though word size is the

same. Note that 16777216 is 214— when four bytes are reversed, the 1 winds up

in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for port-

able data. Programs can be made data-portable by replacing the read () and

write () calls with calls to an XDR library routine xdr_long () , a filter that

knows the standard representation of a long integer in its external form. Here are

the revised versions of writer:

and reader:

Revision A, of 27 March 1990

106 Network Programming

A Canonical Standard

include <stdio.h>
include <rpc/rpc.h> /* xdr is a sub-library ofrpc */

main() /* reader.c */

{

XDR xdrs;
long i, j;

xdrstdio_create (Sxdrs, stdin, XDR_DECODE)

;

for (j = 0; j < 8; j++) {

if (! xdr_long (Sxdrs, Si)) {

fprintf (stderr, "failed! \n")

;

exit (1)

;

}

printf("%ld ", i) ;

}

printf ("\n") ;

exit (0)

;

}

V /

The new programs were executed on a Sun, on a VAX, and from a Sun to a

VAX; the results are shown below.

\

sun% writer
1
reader

0 1 2 3 4 5 6 7

sun%

vax% writer
1
reader

0 1 2 3 4 5 6 7

vax%

sun% writer
1
rsh vax reader

0 1 2 3 4 5 6 7

sun%

V

NOTE Integers are just the tip of the portable-data iceberg. Arbitrary data structures

present portability problems, particularly with respect to alignment and pointers.

Alignment on word boundaries may cause the size ofa structure to varyfrom

machine to machine. And pointers, which are very convenient to use, have no

meaning outside the machine where they are defined.

XDR’s approach to standardizing data representations is canonical. That is,

XDR defines a single byte order (Big Endian), a single floating-point representa-

tion (IEEE), and so on. Any program running on any machine can use XDR to

create portable data by translating its local representation to the XDR standard

representations; similarly, any program running on any machine can read port-

able data by translating the XDR standard representaions to its local equivalents.

The single standard completely decouples programs that create or send portable

data from those that use or receive portable data. The advent of a new machine

or a new language has no effect upon the community of existing portable data

Asun
microsystems

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 107

The XDR Library

creators and users. A new machine joins this community by being “taught” how

to convert the standard representations and its local representations; the local

representations of other machines are irrelevant. Conversely, to existing pro-

grams running on other machines, the local representations of the new machine

are also irrelevant; such programs can immediately read portable data produced

by the new machine because such data conforms to the canonical standards that

they already understand.

There are strong precedents for XDR’s canonical approach. For example,

TCP/IP, UDP/IP, XNS, Ethernet, and, indeed, all protocols below layer five of

the ISO model, are canonical protocols. The advantage of any canonical

approach is simplicity; in the case ofXDR, a single set of conversion routines is

written once and is never touched again. The canonical approach has a disadvan-

tage, but it is unimportant in real-world data transfer applications. Suppose two

Little-Endian machines are transferring integers according to the XDR standard.

The sending machine converts the integers from Little-Endian byte order to XDR
(Big-Endian) byte order, the receiving machine performs the reverse conversion.

Because both machines observe the same byte order, their conversions are

unnecessary. The point, however, is not necessity, but cost as compared to the

alternative.

The time spent converting to and from a canonical representation is insignificant,

especially in networking applications. Most of the time required to prepare a

data structure for transfer is not spent in conversion but in traversing the elements

of the data structure. To transmit a tree, for example, each leaf must be visited

and each element in a leaf record must be copied to a buffer and aligned there;

storage for the leaf may have to be deallocated as well. Similarly, to receive a

tree, storage must be allocated for each leaf, data must be moved from the buffer

to the leaf and properly aligned, and pointers must be constructed to link the

leaves together. Every machine pays the cost of traversing and copying data

structures whether or not conversion is required. In networking applications,

communications overhead—the time required to move the data down through the

sender’s protocol layers, across the network and up through the receiver’s proto-

col layers—dwarfs conversion overhead.

The XDR library not only solves data portability problems, it also allows you to

write and read arbitrary C constructs in a consistent, specified, well-documented

manner. Thus, it can make sense to use the library even when the data is not

shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes),

structures, unions, and arrays, to name a few. Using more primitive routines, you

can write your own specific XDR routines to describe arbitrary data structures,

including elements of arrays, arms of unions, or objects pointed at from other

structures. The structures themselves may contain arrays of arbitrary elements,

or pointers to other structures.

Let’s examine the two programs more closely. There is a family of XDR stream

creation routines in which each member treats the stream of bits differently. In

our example, data is manipulated using standard I/O routines, so we use

xdrstdio_create () . The parameters to XDR stream creation routines vary

microsystems
Revision A, of 27 March 1990

108 Network Programming

according to their function. In our example, xdrstdio_create () takes a

pointer to an XDR structure that it initializes, a pointer to a FILE that the input

or output is performed on, and the operation. The operation may be

XDR_ENCODE for serializing in the writer program, or XDR_DECODE for

deserializing in the reader program.

Note: RPC users never need to create XDR streams; the RPC system itself

creates these streams, which are then passed to the users.

The xdr_long ()
primitive is characteristic of most XDR library primitives

and all client XDR routines. First, the routine returns FALSE (0) if it fails, and

TRUE (1) if it succeeds. Second, for each data type, xxx, there is an associated

XDR routine of the form:

f

xdr xxx (xdrs, xp)

XDR *xdrs;
xxx *xp;

{

}

v — J

In our case, xxx is long, and the corresponding XDR routine is a primitive,

xdr_long () . The client could also define an arbitrary structure xxx in which
case the client would also supply the routine xdr_xxx () , describing each field

by calling XDR routines of the appropriate type. In all cases the first parameter,

xdrs can be treated as an opaque handle, and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to

serialize or deserialize data. This feature is critical to software engineering of

portable data. The idea is to call the same routine for either operation— this

almost guarantees that serialized data can also be deserialized. One routine is

used by both producer and consumer of networked data. This is implemented by
always passing the address of an object rather than the object itself— only in the

case of deserialization is the object modified. This feature is not shown in our

trivial example, but its value becomes obvious when nontrivial data structures are

passed among machines. If needed, the user can obtain the direction of the XDR
operation. See the XDR Operation Directions section of this chapter for details.

Let’s look at a slightly more complicated example. Assume that a person’s gross

assets and liabilities are to be exchanged among processes. Also assume that

these values are important enough to warrant their own data type:

/ —
struct gnumbers {

long g_assets;
long g liabilities;

};

V

The corresponding XDR routine describing this structure would be:

Asun
w* microsystems

Revision A, of 27 March 1990

Chapter 5 — External Data Representation: Sun Technical Notes 109

5.1. XDR Library

Primitives

Number Filters

—
bool_t /* TRUE is success, FALSE isfailure * /

xdr_gnumbers (xdrs, gp)
XDR *xdrs;

struct gnumbers *gp;

{

if (xdr_long (xdrs, &gp->g_assets) &&

xdr_long (xdrs, &gp->g_liabilities)

)

return (TRUE)

;

return (FALSE)

;

}

Note that the parameter xdrs is never inspected or modified; it is only passed on

to the subcomponent routines. It is imperative to inspect the return value of each

XDR routine call, and to give up immediately and return FALSE if the subrou-

tine fails.

This example also shows that the type bool_t is declared as an integer whose

only values are TRUE (1) and FALSE (0). This document uses the following

definitions:

c
define bool_t int

define TRUE 1

#define

V

FALSE 0

>

Keeping these conventions in mind, xdr_gnumbers () can be rewritten as fol-

lows:——
X

xdr_gnumbers (xdrs, gp)
XDR *xdrs;

struct gnumbers *gp;

{

return (xdr_long (xdrs, &gp->g_assets) &&

xdr_long (xdrs, &gp->g_liabilities))

;

}

V. /

This document uses both coding styles.

This section gives a synopsis of each XDR primitive. It starts with basic data

types and moves on to constructed data types. Finally, XDR utilities are dis-

cussed. The interface to these primitives and utilities is defined in the include file

<rpc/xdr . h>, automatically included by <rpc/rpc . h>.

The XDR library provides primitives to translate between numbers and their

corresponding external representations. Primitives cover the set of numbers in:

V

[signed, unsigned] * [short, int, long]

y /

microsystems

Revision A, of 27 March 1990

110 Network Programming

Floating Point Filters

Specifically, the eight primitives are:

t

bool_t xdr_char (xdrs, cp)

XDR *xdrs;
char *cp;

bool_t xdr_u_char (xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

bool_t xdr_int (xdrs, ip)

XDR *xdrs;
int *ip;

bool_t xdr_u_int (xdrs, up)

XDR *xdrs;
unsigned *up;

bool t xdr long (xdrs, lip)

XDR *xdrs;
long *lip;

bool_t xdr_u_long (xdrs, lup)

XDR *xdrs;
u_long *lup;

bool_t xdr_short (xdrs, sip)

XDR *xdrs;
short *sip;

bool_t xdr_u_short (xdrs, sup)

XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is

the address of the number that provides data to the stream or receives data from

it. All routines return TRUE if they complete successfully, and FALSE other-

wise.

The XDR library also provides primitive routines for C’s floating point types:
/ —

N

bool_t xdr_float (xdrs, fp)

XDR *xdrs;
float *fp;

bool_t xdr_double (xdrs, dp)

XDR *xdrs;
double *dp;

v

The first parameter, xdrs is an XDR stream handle. The second parameter is

the address of the floating point number that provides data to the stream or

receives data from it. Both routines return TRUE if they complete successfully,

and FALSE otherwise.

Asun
Xr microsystems

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 111

Note: Since the numbers are represented in IEEE floating point, routines may fail

when decoding a valid IEEE representation into a machine-specific representa-

tion, or vice-versa.

Enumeration Filters The XDR library provides a primitive for generic enumerations. The primitive

assumes that a C enum has the same representation inside the machine as a C
integer. The boolean type is an important instance of the enum. The external

representation of a boolean is always TRUE (1) or FALSE (0).

The second parameters ep and bp are addresses of the associated type that pro-

vides data to, or receives data from, the stream xdrs.

No Data Occasionally, an XDR routine must be supplied to the RPC system, even when

no data is passed or required. The library provides such a routine:

Constructed Data Type Filters Constructed or compound data type primitives require more parameters and per-

form more complicated functions then the primitives discussed above. This sec-

tion includes primitives for strings, arrays, unions, and pointers to structures.

Constructed data type primitives may use memory management. In many cases,

memory is allocated when deserializing data with XDR_DECODE. Therefore, the

XDR package must provide means to deallocate memory. This is done by an

XDR operation, XDR_FREE. To review, the three XDR directional operations

are XDR_ENCODE, XDR_DECODE, and XDR_FREE.

Strings In C, a string is defined as a sequence of bytes terminated by a null byte, which is

not considered when calculating string length. However, when a string is passed

or manipulated, a pointer to it is employed. Therefore, the XDR library defines a

string to be a char *, and not a sequence of characters. The external represen-

tation of a string is drastically different from its internal representation. Exter-

nally, strings are represented as sequences of ASCII characters, while internally,

they are represented with character pointers. Conversion between the two

representations is accomplished with the routine xdr_string ()

:

Revision A, of 27 March 1990

112 Network Programming

Keep maxlength small. If it is too

big you can blow the heap, since

xdr_string () will call malloc (

)

for space.

Byte Arrays

r A

bool_t xdr_string (xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

V

The first parameter xdrs is the XDR stream handle. The second parameter sp
is a pointer to a string (type char **). The third parameter maxlength
specifies the maximum number of bytes allowed during encoding or decoding,

its value is usually specified by a protocol. For example, a protocol specification

may say that a file name may be no longer than 255 characters.

The routine returns FALSE if the number of characters exceeds maxlength,
and TRUE if it doesn’t.

The behavior of xdr_string () is similar to the behavior of other routines dis-

cussed in this section. The direction XDR_ENCODE is easiest to understand. The
parameter sp points to a string of a certain length; if the string does not exceed

maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming

string is determined; it must not exceed maxlength. Next sp is dereferenced;

if the value is NULL, then a string of the appropriate length is allocated and *sp
is set to this string. If the original value of *sp is non-null, then the XDR pack-

age assumes that a target area has been allocated, which can hold strings no
longer than maxlength. In either case, the string is decoded into the target

area. The routine then appends a null character to the string.

In the xdr_free operation, the string is obtained by dereferencing sp. If the

string is not NULL, it is freed and * sp is set to NULL. In this operation,

xdr_string () ignores the maxlength parameter.

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ

from strings in the following three ways: 1) the length of the array (the byte

count) is explicitly located in an unsigned integer, 2) the byte sequence is not ter-

minated by a null character, and 3) the external representation of the bytes is the

same as their internal representation. The primitive xdr_bytes () converts

between the internal and external representations of byte arrays:

(

—
\

bool_t xdr_bytes (xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *lp;

u_int maxlength;

V >

The usage of the first, second and fourth parameters are identical to the first,

second and third parameters of xdr_string () , respectively. The length of

the byte area is obtained by dereferencing lp when serializing; *lp is set to the

byte length when deserializing.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 113

Arrays The XDR library package provides a primitive for handling arrays of arbitrary

elements. The xdr_bytes () routine treats a subset of generic arrays, in which

the size of array elements is known to be 1, and the external description of each

element is built-in. The generic array primitive, xdr_array () requires param-

eters identical to those of xdr_bytes ()
plus two more: the size of array ele-

ments, and an XDR routine to handle each of the elements. This routine is called

to encode or decode each element of the array.

The parameter ap is the address of the pointer to the array. If *ap is NULL

when the array is being deserialized, XDR allocates an array of the appropriate

size and sets *ap to that array. The element count of the array is obtained from

*lp when the array is serialized; *lp is set to the array length when the array is

deserialized. The parameter maxlength is the maximum number of elements

that the array is allowed to have; element siz is the byte size of each element

of the array (the C function si zeof () can be used to obtain this value). The

xdr_element () routine is called to serialize, deserialize, or free each element

of the array.

Before defining more constructed data types, it is appropriate to present three

examples.

Example A:

A user on a networked machine can be identified by (a) the machine name, such

as krypton: see the gethostname man page; (b) the user’s UID: see the

geteuid man page; and (c) the group numbers to which the user belongs: see

the getgroups man page. A stmcture with this information and its associated

XDR routine could be coded like this:

f#sun
microsystems

Revision A, of 27 March 1990

114 Network Programming

Example B:

A party of network users could be implemented as an array of netuser struc-

ture. The declaration and its associated XDR routines are as follows:

Example C:

The well-known parameters to main, argc and argv can be combined into a

structure. An array of these structures can make up a history of commands. The
declarations and XDR routines might look like:

Asun
microsystems

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 115

struct cmd {

u_int c_argc;
char **c_argv;

1

;

define ALEN 1000 /* args cannot be > 1000 chars */

define NARGC 100 /* commands cannot have > 100 args */

struct history {

u_int h_len;
struct cmd *h_cmds;

1 ;

define NCMDS 7 5 /* history is no more than 75 commands */

bool_t
xdr_wrapstring (xdrs, sp)

XDR *xdrs;
char **sp;

1

return (xdr_string (xdrs, sp, ALEN));

1

bool_t
xdr_cmd (xdrs , cp)

XDR *xdrs;

struct cmd *cp;

{

return (xdr_array (xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrapstring))

;

1

bool_t
xdr_history (xdrs, hp)

XDR *xdrs;

struct history *hp;

{

return (xdr_array (xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd) , xdr_cmd))

;

1

v

The most confusing part of this example is that the routine

xdr_wrapstring () is needed to package the xdr_string () routine,

because the implementation of xdr_array () only passes two parameters to

the array element description routine; xdr_wrapstring () supplies the third

parameter to xdr_string ()

.

By now the recursive nature of the XDR library should be obvious. Let’s con-

tinue with more constructed data types.

Opaque Data In some protocols, handles are passed from a server to client. The client passes

the handle back to the server at some later time. Handles are never inspected by

clients; they are obtained and submitted. That is to say, handles are opaque. The

xdr_opaque ()
primitive is used for describing fixed sized, opaque bytes.

microsystems

Revision A, of 27 March 1990

116 Network Programming

Fixed Sized Arrays

Discriminated Unions

\

bool_t xdr_opaque (xdrs, p, len)
XDR *xdrs;
char *p;

u_int len;

V

The parameter p is the location of the bytes; len is the number of bytes in the

opaque object. By definition, the actual data contained in the opaque object are

not machine portable.

The XDR library provides a primitive, xdr_vector () , for fixed-length arrays.

define NLEN 255 /* machine names must be < 256 chars */
define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {

char *nu_machinename;
int nu_uid;
int nu_gids [NGRPS] ;

}

;

bool_t
xdr_netuser (xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{

int i;

if (! xdr_string (xdrs, &nup->nu_machinename, NLEN))
return (FALSE) ;

if (! xdr_int (xdrs, &nup->nu_uid)

)

return (FALSE)

;

if (!xdr_vector (xdrs, nup->nu_gids, NGRPS, sizeof(int),
xdr_int)) {

return (FALSE) ;

}

return (TRUE)

;

}

The XDR library supports discriminated unions. A discriminated union is a C
union and an enum t value that selects an “arm” of the union.

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 117

struct xdr_discrim {

enum_t value;
bool_t (*proc) ();

} ;

bool_t xdr_union (xdrs, dscmp, unp, arms, defaultarm)
XDR *xdrs;
enum_t *dscmp;
char *unp;

struct xdr_discrim *arms;

bool_t (*defaultarm) () ; /* may equal NULL */

^

First the routine translates the discriminant of the union located at *dscmp. The

discriminant is always an enum_t. Next the union located at *unp is

translated. The parameter arms is a pointer to an array of xdr_di scrim
structures. Each structure contains an ordered pair of [value ,

proc] . If the

union’s discriminant is equal to the associated value, then the proc is called to

translate the union. The end of the xdr_discrim structure array is denoted by

a routine of value NULL (0). If the discriminant is not found in the arms array,

then the defaultarm procedure is called if it is non-null; otherwise the routine

returns FALSE.

Example D: Suppose the type of a union may be integer, character pointer (a

string), or a gnumbers structure. Also, assume the union and its current type

are declared in a structure. The declaration is:

r N

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u tag {

enum utype utype;

union {

/* the union' s discriminant */

int ival;
char *pval;

struct gnumbers

} uval;

} ;

v

gn;

J

The following constructs and XDR procedure (de)serialize the discriminated

union;

Revision A, of 27 March 1990

118 Network Programming

struct xdr_discrim u_tag_arms [4] = {

{ INTEGER, xdr_int },

{ GNUMBERS, xdr_gnumbers)

{ STRING, xdr_wrapstring }

,

{
dontcare , NULL }

/ * always terminate arms with a NULL xdr_proc * /

}

bool_t
xdr_u_tag (xdrs, utp)

XDR *xdrs;

struct u_tag *utp;

{

return (xdr_union (xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL))

;

I

v. >

The routine xdr_gnumber s () was presented above in The XDR Library sec-

tion. xdr_wrapstring () was presented in example C. The default arm
parameter to xdr_union ()

(the last parameter) is NULL in this example.

Therefore the value of the union’s discriminant may legally take on only values

listed in the u_tag_arms array. This example also demonstrates that the ele-

ments of the arm’s array do not need to be sorted.

It is worth pointing out that the values of the discriminant may be sparse, though

in this example they are not. It is always good practice to assign explicitly

integer values to each element of the discriminant’s type. This practice both

documents the external representation of the discriminant and guarantees that dif-

ferent C compilers emit identical discriminant values.

Exercise: Implement xdr_union () using the other primitives in this section.

Pointers In C it is often convenient to put pointers to another structure within a structure.

The xdr_reference ()
primitive makes it easy to serialize, deserialize, and

free these referenced structures.

bool_t xdr_reference (xdrs, pp, size, proc)
XDR *xdrs;
char **pp;

u_int ssize;
bool_t (*proc)();

\ ,

Parameter pp is the address of the pointer to the structure; parameter ssize is

the size in bytes of the structure (use the C function sizeof () to obtain this

value); and proc is the XDR routine that describes the structure. When decod-

ing data, storage is allocated if *pp is NULL.

There is no need for a primitive xdr_struct () to describe structures within

structures, because pointers are always sufficient.

Xr microsystems
Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 119

Exercise: Implement xdr_reference () using xdr_array () . Warning:

xdr_reference () and xdr_array () are NOT interchangeable external

representations of data.

Example E: Suppose there is a structure containing a person’s name and a pointer

to a gnumbers structure containing the person’s gross assets and liabilities.

The construct is:

r >

struct pgn {

char *name;
struct gnumbers *gnp;

};

\ J

The corresponding XDR routine for this structure is:

/ \

bool_t
xdr_pgn (xdrs, pp)

XDR *xdrs;
struct pgn *pp;

{

if (xdr_string (xdrs, &pp->name, NLEN) &&

xdr_reference (xdrs, &pp->gnp,
sizeof (struct gnumbers) , xdr_gnumbers)

)

return (TRUE) ;

return (FALSE) ;

}

s ,

Pointer Semantics andXDR

In many applications, C programmers attach double meaning to the values of a

pointer. Typically the value NULL (or zero) means data is not needed, yet some

application-specific interpretation applies. In essence, the C programmer is

encoding a discriminated union efficiently by overloading the interpretation of

the value of a pointer. For instance, in example E a NULL pointer value for gnp
could indicate that the person’s assets and liabilities are unknown. That is, the

pointer value encodes two things: whether or not the data is known; and if it is

known, where it is located in memory. Linked lists are an extreme example of

the use of application-specific pointer interpretation.

The primitive xdr_reference () cannot and does not attach any special

meaning to a null-value pointer during serialization. That is, passing an address

of a pointer whose value is NULL to xdr_reference () when seriating data

will most likely cause a memory fault and, on the UNIX system, a core dump.

xdr_po inter () correctly handles NULL pointers. For more information

about its use, see Linked Lists.

Exercise: After reading the section on Linked Lists, return here and extend exam-

ple E so that it can correctly deal with NULL pointer values.

Exercise: Using the xdr_union () , xdr_reference () and xdr_void (

)

primitives, implement a generic pointer handling primitive that implicitly deals

Revision A, of 27 March 1990

120 Network Programming

with NULL pointers. That is, implement xdr_pointer ()

.

Non-filter Primitives XDR streams can be manipulated with the primitives discussed in this section.

The routine xdr_getpos () returns an unsigned integer that describes the

current position in the data stream. Warning: In some XDR streams, the returned

value of xdr_getpos () is meaningless; the routine returns a -1 in this case

(though -1 should be a legitimate value).

The routine xdr_setpos () sets a stream position to pos. Warning: In some
XDR streams, setting a position is impossible; in such cases, xdr_setpos (

)

will return FALSE. This routine will also fail if the requested position is out-of-

bounds. The definition of bounds varies from stream to stream.

The xdr_destroy ()
primitive destroys the XDR stream. Usage of the stream

after calling this routine is undefined.

XDR Operation Directions At times you may wish to optimize XDR routines by taking advantage of the

direction of the operation— XDR_ENCODE, XDR_DECODE, or xdr_free.
The value xdrs->x_op always contains the direction of the XDR operation.

Programmers are not encouraged to take advantage of this information. There-

fore, no example is presented here. However, an example in the Linked Lists sec-

tion, below, demonstrates the usefulness of the xdrs->x_op field.

XDR Stream Access An XDR stream is obtained by calling the appropriate creation routine. These

creation routines take arguments that are tailored to the specific properties of the

stream.

Streams currently exist for (de)serialization of data to or from standard I/O file
streams, TCP/IP connections and UNIX files, and memory.

Standard I/O Streams XDR streams can be interfaced to standard I/O using the

xdrstdio create () routine as follows:

Asun
microsystems

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 121

Memory Streams

Record (TCP/IP) Streams

C N

#include <stdio.h>
include <rpc/rpc.h> /* xdr streams part ofrpc */

void
xdrstdio_create (xdrs, fp, x_op)

XDR *xdrs;
FILE *fp;

enum xdr_op x_op;

v

The routine xdrstdio_create () initializes an XDR stream pointed to by

xdrs. The XDR stream interfaces to the standard I/O library. Parameter fp is

an open file, and x_op is an XDR direction.

Memory streams allow the streaming of data into or out of a specified area of

memory:

r

include <rpc/rpc.h>

void
xdrmem_create (xdrs, addr, len, x_op)

XDR *xdrs;
char *addr;
u_int len;

enum xdr_op x_op;

V

The routine xdrmem_create () initializes an XDR stream in local memory.

The memory is pointed to by parameter addr; parameter len is the length in

bytes of the memory. The parameters xdrs and x_op are identical to the

corresponding parameters of xdrstdio_create () . Currently, the UDP/IP

implementation ofRPC uses xdrmem_create () . Complete call or result

messages are built in memory before calling the sendto () system routine.

A record stream is an XDR stream built on top of a record marking standard that

is built on top of the UNIX file or 4.2 BSD connection interface.

include <rpc/rpc.h> /* xdr streams part of rpc */

xdrrec_create (xdrs,

sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc) (), (*writeproc) ();

s ,

The routine xdrrec_create ()
provides an XDR stream interface that allows

for a bidirectional, arbitrarily long sequence of records. The contents of the

records are meant to be data in XDR form. The stream’s primary use is for inter-

facing RPC to TCP connections. However, it can be used to stream data into or

out of normal UNIX files.

microsystems
Revision A, of 27 March 1990

122 Network Programming

The parameter xdr s is similar to the corresponding parameter described above.

The stream does its own data buffering similar to that of standard I/O. The

parameters sendsize and recvsize determine the size in bytes of the output

and input buffers, respectively; if their values are zero (0), then predetermined

defaults are used. When a buffer needs to be filled or flushed, the routine read-
proc() or writeproc () is called, respectively. The usage and behavior of

these routines are similar to the UNIX system calls read () and writ e ()

.

However, the first parameter to each of these routines is the opaque parameter

iohandle. The other two parameters (buf and nbytes) and the results (byte

count) are identical to the system routines. If xxx is readproc () or wri-
teproc () , then it has the following form:

(

l*

* returns the actual number ofbytes transferred

* -1 is an error

*/

int
xxx (iohandle, buf, len)

char *iohandle;
char *buf;

int nbytes;

V

The XDR stream provides means for delimiting records in the byte stream. The

implementation details of delimiting records in a stream are discussed in the

Advanced Topics section, below. The primitives that are specific to record

streams are as follows:

r

bool_t
xdrrec_endofrecord (xdrs, flushnow)

XDR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord (xdrs)

XDR *xdrs;

bool_t
xdrrec_eof (xdrs)

XDR *xdrs;

v v

The routine xdrrec_endofrecord () causes the current outgoing data to be

marked as a record. If the parameter flu shnow is TRUE, then the stream’s

writeproc will be called; otherwise, writeproc will be called when the

output buffer has been filled.

The routine xdrrec_skiprecord () causes an input stream’s position to be

moved past the current record boundary and onto the beginning of the next

record in the stream.

If there is no more data in the stream’s input buffer, then the routine

xdrrec_eof () returns TRUE. That is not to say that there is no more data in

the underlying file descriptor.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 123

XDR Stream Implementation This section provides the abstract data types needed to implement new instances

ofXDR streams.

The XDR Object The following structure defines the interface to an XDR stream:

(
\

enum xdr_op { XDR_ENCODE=0, XDR_DECODE=l, XDR_FREE=2 };

typedef struct i

enum xdr op x_op; /* operation;fast addedparam */

struct xdr ops {

bool_t (*x_getlong) ()

;

/* get longfrom stream */

bool_t (*x_j?utlong) () ; / * put long to stream * /

bool_t (*x_getbytes) ()

;

/ * get bytesfrom stream * /

bool_t (*x_putbytes) ()

;

/ * put bytes to stream * /

u_int (*x_getpostn) () ; / * return stream offset * /

bool_t (*x_setpostn) () ; /* reposition offset */

caddr_t (*x_inline) ()

;

/ * ptr to buffered data * /

VOID (*x_destroy) <); / * free private area * /

} *x_ops;
caddr_t x_public; /* users’ data * /

caddr_t x_private; /* pointer to private data */

caddr_t x_base; /* private for position info */

int x_handy; /* extra private word */

} XDR;

v /

The x_op field is the current operation being performed on the stream. This

field is important to the XDR primitives, but should not affect a stream’s imple-

mentation. That is, a stream’s implementation should not depend on this value.

The fields x_private, x_base, and x_handy are private to the particular

stream’s implementation. The field x_public is for the XDR client and should

never be used by the XDR stream implementations or the XDR primitives.

x_getpostn () , x_setpostn () , and x_destroy () , are macros for

accessing operations. The operation x_inline () takes two parameters: an

XDR *, and an unsigned integer, which is a byte count. The routine returns a

pointer to a piece of the stream’s internal buffer. The caller can then use the

buffer segment for any purpose. From the stream’s point of view, the bytes in

the buffer segment have been consumed or put. The routine may return NULL if

it cannot return a buffer segment of the requested size. (The x_inline {) rou-

tine is for cycle squeezers. Use of the resulting buffer is not data-portable. Users

are encouraged not to use this feature.)

The operations x_getbytes () and x_putbytes () blindly get and put

sequences of bytes from or to the underlying stream; they return TRUE if they are

successful, and FALSE otherwise. The routines have identical parameters

(replace xxx):

©sun
Xr microsystems

Revision A, of 27 March 1990

124 Network Programming

5.2. Advanced Topics

Linked Lists

r

bool_t
xxxbytes (xdrs, buf, bytecount)

XDR *xdrs;

char *buf;

u_int bytecount;

\

V J

The operations x_get long () and x_jputlong () receive and put long

numbers from and to the data stream. It is the responsibility of these routines to

translate the numbers between the machine representation and the (standard)

external representation. The UNIX primitives htonl () and ntohl () can be

helpful in accomplishing this. The higher-level XDR implementation assumes

that signed and unsigned long integers contain the same number of bits, and that

nonnegative integers have the same bit representations as unsigned integers. The

routines return TRUE if they succeed, and FALSE otherwise. They have identi-

cal parameters:

\

bool t

xxxlong (xdrs, lp)

XDR *xdrs;
long *lp;

v J

Implementors ofnew XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of create routine.

This section describes techniques for passing data structures that are not covered

in the preceding sections. Such structures include linked lists (of arbitrary

lengths). Unlike the simpler examples covered in the earlier sections, the follow-

ing examples are written using both the XDR C library routines and the XDR
data description language. The External Data Representation Standard: Proto-

col Specification chapter of this Network Programming manual describes this

language in complete detail.

The last example in the Pointers section presented a C data structure and its asso-

ciated XDR routines for a individual’s gross assets and liabilities. The example

is duplicated below:

microsystems
Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 125

,

struct gnumbers {

long g_assets;
long g_liabilities;

)

;

bool_t
xdr_gnuirbers (xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

if (xdr_long (xdrs, & (gp->g_assets))

)

return (xdr_long (xdrs, & (gp->g_liabilities)))

;

return (FALSE)

;

}

t

,

Now assume that we wish to implement a linked list of such information. A data

structure could be constructed as follows:

.

struct gnumbers_node {

struct gnumbers gn_numbers;
struct gnumbers_node *gn_next;

};

typedef struct gnumbers_node *gnumbers_list;
V ,

The head of the linked list can be thought of as the data object; that is, the head is

not merely a convenient shorthand for a structure. Similarly the gn_next field

is used to indicate whether or not the object has terminated. Unfortunately, if the

object continues, the gn_next field is also the address of where it continues.

The link addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive declara-

tion of gnumbers_list: —
struct gnumbers {

int g_assets;
int g_liabilitd.es;

1

;

struct gnumbers_node {

gnumbers gn_numbers;
gnumbers_node *gn_next;

}

;

v

In this description, the boolean indicates whether there is more data following it.

If the boolean is FALSE, then it is the last data field of the structure. If it is

TRUE, then it is followed by a gnumbers structure and (recursively) by a

gnumbers_list . Note that the C declaration has no boolean explicitly

declared in it (though the gn_next field implicitly carries the information),

while the XDR data description has no pointer explicitly declared in it.

\r microsystems
Revision A, of 27 March 1990

126 Network Programming

Hints for writing the XDR routines for a gnumber s_list follow easily from

the XDR description above. Note how the primitive xdr_pointer () is used

to implement the XDR union above.
>

bool_t
xdr_gnumbers_node (xdrs, gn)

XDR *xdrs;

gnumbers_node *gn;

{

return (xdr_gnumbers (xdrs, &gn->gn_numbers) &&

xdr_gnumbers_list (xdrs, &gp->gn_next))

;

)

bool_t
xdr_gnumbers_list (xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

{

return (xdr_pointer (xdrs, gnp,

sizeof (struct gnumbers_node) ,

xdr_gnumbers_node)) ;

}

v

The unfortunate side effect of XDR’ing a list with these routines is that the C
stack grows linearly with respect to the number of node in the list. This is due to

the recursion. The following routine collapses the above two mutually recursive

into a single, non-recursive one.

Revision A, of 27 March 1990

Chapter 5— External Data Representation: Sun Technical Notes 127

('l

bool_t
xdr_gnumbers_list (xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

{

bool_t more_data;
gnumbers_list *nextp;

for (;;) {

more_data = (*gnp != NULL);
if (! xdr_bool (xdrs, &more_data)) {

return (FALSE)

;

}

if (! more_data) {

break;

}

if (xdrs->x_op == XDR_FREE) {

nextp = & (*gnp) ->gn_next;

}

if (!xdr_reference (xdrs, gnp,

sizeof (struct gnumbers_node) , xdr_gnumbers)) {

return (FALSE)

;

}

gnp = (xdrs->x_op == XDR_FREE) ?

nextp : & (*gnp) ->gn_next;

)

*gnp = NULL;
return (TRUE)

;

}

s .

The first task is to find out whether there is more data or not, so that this boolean

information can be serialized. Notice that this statement is unnecessary in the

XDR_DECODE case, since the value of more_data is not known until we deserial-

ize it in the next statement.

The next statement XDR’s the more_data field of the XDR union. Then if there

is truly no more data, we set this last pointer to NULL to indicate the end of the

list, and return TRUE because we are done. Note that setting the pointer to NULL
is only important in the XDR_DECODE case, since it is already NULL in the

XDR_ENCODE and XDR_FREE cases.

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the

location of the next pointer in the list. We do this now because we need to

dereference gnp to find the location of the next item in the list, and after the next

statement the storage pointed to by gnp will be freed up and no be longer valid.

We can’t do this for all directions though, because in the XDR_DECODE direc-

tion the value of gnp won’t be set until the next statement.

Next, we XDR the data in the node using the primitive xdr_referenee ()

.

xdr_reference () is like xdr^pointer () which we used before, but it

does not send over the boolean indicating whether there is more data. We use it

Revision A, of 27 March 1990

instead of xdrjpointer () because we have already XDR’d this information

ourselves. Notice that the xdr routine passed is not the same type as an element

in the list. The routine passed is xdr_gnumber s () , for XDR’ing gnumbers,

but each element in the list is actually of type gnumbers_node. We don’t

pass xdr_gnumber s_node () because it is recursive, and instead use

xdr_gnumbers () which XDR’s all of the non-recursive part. Note that this

trick will work only if the gn_numbers field is the first item in each element,

so that their addresses are identical when passed to xdr_reference ()

.

Finally, we update gnp to point to the next item in the list. If the direction is

XDR_FREE, we set it to the previously saved value, otherwise we can derefer-

ence gnp to get the proper value. Though harder to understand than the recursive

version, this non-recursive routine is far less likely to blow the C stack. It will

also run more efficiently since a lot of procedure call overhead has been

removed. Most lists are small though (in the hundreds of items or less) and the

recursive version should be sufficient for them.

n
microsystems

Revision A, of 27 March 1990

PART TWO: Protocol Specifications

6

External Data Representation Standard:

Protocol Specification

6.1. Status of this Standard Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others

are using. It has been designated RFC1014 by the ARPA Network Information

Center.

6.2. Introduction XDR is a standard for the description and encoding of data. It is useful for

transferring data between different computer architectures, and has been used to

communicate data between such diverse machines as the Sun Workstation, VAX,
IBM-PC, and Cray. XDR fits into the ISO presentation layer, and is roughly

analogous in purpose to X.409, ISO Abstract Syntax Notation. The major differ-

ence between these two is that XDR uses implicit typing, while X.409 uses expli-

cit typing.

XDR uses a language to describe data formats. The language can only be used

only to describe data; it is not a programming language. This language allows

one to describe intricate data formats in a concise manner. The alternative of

using graphical representations (itself an informal language) quickly becomes

incomprehensible when faced with complexity. The XDR language itself is

similar to the C language [1], just as Courier [4] is similar to Mesa. Protocols

such as Sun RPC (Remote Procedure Call) and the NFS (Network File System)

use XDR to describe the format of their data.

The XDR standard makes the following assumption: that bytes (or octets) are

portable, where a byte is defined to be 8 bits of data. A given hardware device

should encode the bytes onto the various media in such a way that other

hardware devices may decode the bytes without loss of meaning. For example,

the Ethernet standard suggests that bytes be encoded in "little-endian" style [2],

or least significant bit first.

Basic Block Size The representation of all items requires a multiple of four bytes (or 32 bits) of

data. The bytes are numbered 0 through n-1. The bytes are read or written to

some byte stream such that byte m always precedes byte m+1. If the n bytes

needed to contain the data are not a multiple of four, then the n bytes are fol-

lowed by enough (0 to 3) residual zero bytes, r, to make the total byte count a

multiple of 4.

We include the familiar graphic box notation for illustration and comparison. In

most illustrations, each box (delimited by a plus sign at the 4 comers and vertical

bars and dashes) depicts a byte. Ellipses (...) between boxes show zero or more

131 Revision A, of 27 March 1990

132 Protocol Specifications

6.3. XDR Data Types

Integer

Unsigned Integer

additional bytes where required.

A Block

0 I

—>1

>1

h 1 y . . .
1 y . . .

+-

I
byte 0 |

byte 1 I
. . . |byte n-1

1 0 I
... I

-I 1 1- . . . H 1 1- . . . H

—

|< n bytes >|< r bytes
|< n+r (where (n+r) mod 4 = 0)>

Each of the sections that follow describes a data type defined in the XDR stan-

dard, shows how it is declared in the language, and includes a graphic illustration

of its encoding.

For each data type in the language we show a general paradigm declaration.

Note that angle brackets (< and >) denote variable length sequences of data and

square brackets ([and]) denote fixed-length sequences of data, "n", "m" and "r"

denote integers. For the full language specification and more formal definitions

of terms such as "identifier" and "declaration", refer to The XDR Language

Specification, below.

For some data types, more specific examples are included. A more extensive

example of a data description is in An Example ofan XDR Data Description,

below.

An XDR signed integer is a 32-bit datum that encodes an integer in the range [-

2147483648,2147483647]. The integer is represented in two’s complement nota-

tion. The most and least significant bytes are 0 and 3, respectively. Integers are

declared as follows:

Integer

(MSB) (LSB)

I
byte 0 | byte 1 Ibyte 2 |byte 3 I

< 32 bits >

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in

the range [0,4294967295]. It is represented by an unsigned binary number whose

most and least significant bytes are 0 and 3, respectively. An unsigned integer is

declared as follows:

Unsigned Integer

(MSB) (LSB)

Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 |

< 32 bits >

Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 133

Enumeration Enumerations have the same representation as signed integers. Enumerations are

handy for describing subsets of the integers. Enumerated data is declared as fol-

lows:

enum { name-identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be described by an

enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any other integer than those that have been

given assignments in the enum declaration.

Boolean Booleans are important enough and occur frequently enough to warrant their own
explicit type in the standard. Booleans are declared as follows:

bool identifier;

This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

The standard also defines 64-bit (8-byte) numbers called hyper integer and

unsigned hyper integer. Their representations are the obvious extensions of

integer and unsigned integer defined above. They are represented in two’s com-

plement notation. The most and least significant bytes are 0 and 7, respectively.

Their declarations:

Hyper Integer

Unsigned Hyper Integer

(MSB) (LSB)

I
byte 0 I byte 1 I

byte 2 |byte 3 |byte 4 |byte 5 I byte 6 I byte 7 |

+ + + + + + + + +
< 64 bits >

Hyper Integer and Unsigned

Hyper Integer

Floating-point The standard defines the floating-point data type "float" (32 bits or 4 bytes). The
encoding used is the IEEE standard for normalized single-precision floating-

point numbers [3]. The following three fields describe the single-precision

floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and negative,

respectively. One bit.

E: The exponent of the number, base 2. 8 bits are devoted to this field.

The exponent is biased by 127.

F: The fractional part of the number’s mantissa, base 2. 23 bits are

devoted to this field.

Therefore, the floating-point number is described by:

W *******
xr microsystems

Revision A, of 27 March 1990

134 Protocol Specifications

Double-precision Floating-

point

(-1) **S * 2** (E-Bias) * l.F

It is declared as follows:

Single-Precision Floating-Point

I
byte 0 | byte 1 |byte 2 Ibyte 3 I

SI E
|

F I

I I

<- 8 ->|< 23 bits >|

< 32 bits >

Just as the most and least significant bytes of a number are 0 and 3, the most and

least significant bits of a single-precision floating- point number are 0 and 31.

The beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 9,

respectively. Note that these numbers refer to the mathematical positions of the

bits, and NOT to their actual physical locations (which vary from medium to

medium).

The IEEE specifications should be consulted concerning the encoding for signed

zero, signed infinity (overflow), and denormalized numbers (underflow) [3],

According to IEEE specifications, the "NaN" (not a number) is system dependent

and should not be used externally.

The standard defines the encoding for the double-precision floating- point data

type "double" (64 bits or 8 bytes). The encoding used is the IEEE standard for

normalized double-precision floating-point numbers [3]. The standard encodes

the following three fields, which describe the double-precision floating-point

number:

S: The sign of the number. Values 0 and 1 represent positive and negative,

respectively. One bit.

E: The exponent of the number, base 2. 1 1 bits are devoted to this field.

The exponent is biased by 1023.

F: The fractional part of the number’s mantissa, base 2. 52 bits are

devoted to this field.

Therefore, the floating-point number is described by:

(-1) **S * 2** (E-Bias) * l.F

It is declared as follows:

Double-Precision Floating-Point

Ibyte 0 | byte 1 1 byte 2 Ibyte 3 I
byte 4 Ibyte 5 Ibyte 6 Ibyte 7|

SI E
|

F
I

1 1

<—11—> |

< 52 bits >|

< 64 bits >

Just as the most and least significant bytes of a number are 0 and 3, the most and

microsystems
Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 135

least significant bits of a double-precision floating- point number are 0 and 63.

The beginning bit (and most significant bit) offsets of S, E , and F are 0, 1, and

12, respectively. Note that these numbers refer to the mathematical positions of

the bits, and NOT to their actual physical locations (which vary from medium to

medium).

The IEEE specifications should be consulted concerning the encoding for signed

zero, signed infinity (overflow), and denormalized numbers (underflow) [3].

According to IEEE specifications, the "NaN" (not a number) is system dependent

and should not be used externally.

Fixed-length Opaque Data At times, fixed-length uninterpreted data needs to be passed among machines.

This data is called "opaque" and is declared as follows:

opaque identifier [n]

;

where the constant n is the (static) number of bytes necessary to contain the

opaque data. If n is not a multiple of four, then the n bytes are followed by

enough (0 to 3) residual zero bytes, r, to make the total byte count of the opaque

object a multiple of four.

Fixed-Length Opaque

0 1

+ + +. . .+ + +. . .+ +

|
byte 0 I byte 1 I . . . Ibyte n-1

1 0 I
...

I 0 |

+ + +. . .+ + +. . .+ +
|< n bytes >|< r bytes >|

|< n+r (where (n+r) mod 4 - 0) >|

Variable-length Opaque Data The standard also provides for variable-length (counted) opaque data, defined as

a sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n
encoded as an unsigned integer (as described below), and followed by the n bytes

of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of

the sequence always follows the sequence’s length (count), enough (0 to 3) resi-

dual zero bytes, r, to make the total byte count a multiple of four. Variable-

length opaque data is declared in the following way:

opaque identifier<m>;

or

opaque identifierO;

The constant m denotes an upper bound of the number of bytes that the sequence

may contain. Ifm is not specified, as in the second declaration, it is assumed to

be (2**32) - 1, the maximum length. The constant m would normally be found

in a protocol specification. For example, a filing protocol may state that the max-

imum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

This can be illustrated as follows:

ffsun
Nr microsystems

Revision A, of 27 March 1990

136 Protocol Specifications

String

Fixed-length Array

Variable-Length Opaque

0 1 2 3 4 5

+ + + + + + +. . .+ + +. . .+ +

1 length n I byteO | bytel
I ... I

n-1
| 0 I ... I 0 |

+ + + + + + +. . .+ + + . . .+ +

|< 4 bytes >|< n bytes >|< r bytes >|

|< n+r (where (n+r) mod 4 = 0) >|

It is an error to encode a length greater than the maximum described in the

specification.

The standard defines a string of n (numbered 0 through n-1) ASCII bytes to be

the number n encoded as an unsigned integer (as described above), and followed

by the n bytes of the string. Byte m of the string always precedes byte m+1 of

the string, and byte 0 of the string always follows the string’s length. If n is not a

multiple of four, then the n bytes are followed by enough (0 to 3) residual zero

bytes, r, to make the total byte count a multiple of four. Counted byte strings are

declared as follows:

string object<m>;

or

string objectO;

The constant m denotes an upper bound of the number of bytes that a string may
contain. Ifm is not specified, as in the second declaration, it is assumed to be

(2**32) - 1, the maximum length. The constant m would normally be found in a

protocol specification. For example, a filing protocol may state that a file name
can be no longer than 255 bytes, as follows:

string filename<255>;

Which can be illustrated as:

A String

0 1 2 3 4 5

+ + + + + + +. . .+ + +. . .+ +

[
length n I byteO | bytel | ... |

n-1
| 0 I... I 0 |

+ + + + + + +. . .+ + +. . .+ +
|< 4 bytes >|< n bytes >|< r bytes >|

|< n+r (where (n+r) mod 4 = 0) >|

It is an error to encode a length greater than the maximum described in the

specification.

Declarations for fixed-length arrays of homogeneous elements are in the follow-

ing form:

type-name identifier [n]

;

Fixed-length arrays of elements numbered 0 through n-1 are encoded by

Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 137

Variable-length Array

Structure

individually encoding the elements of the array in their natural order, 0 through

n-1. Each element’s size is a multiple of four bytes. Though all elements are of

the same type, the elements may have different sizes. For example, in a fixed-

length array of strings, all elements are of type "string", yet each element will

vary in its length.

Fixed-Length Array

+ + + + + + + + + .

.

.+ + + + +

|
element 0 |

element 1 I ... I
element n-1

|

+ + + + + + + + +. . .+ + + + +

|< n elements >1

Counted arrays provide the ability to encode variable-length arrays of homogene-

ous elements. The array is encoded as the element count n (an unsigned integer)

followed by the encoding of each of the array’s elements, starting with element 0

and progressing through element n- 1. The declaration for variable-length arrays

follows this form:

type-name identifier<m>;

or

type-name identifierO;

The constant m specifies the maximum acceptable element count of an array; if

m is not specified, as in the second declaration, it is assumed to be (2**32) - 1.

Counted Array

0 12 3

+—+—+—+—+—+—+—+—+—+—+—+—+. . .+—+—+—+—

+

|
n

|
element 0 I

element 1 I
. . . | element n-1

|

+—+—+—+—+—+—+—+—+—+—+—+—+. . .+—+—+—+—

+

|
<-4 bytes->|< n elements >|

It is an error to encode a value of n that is greater than the maximum described in

the specification.

Structures are declared as follows:

struct {

component-declaration-A;
component-declaration-B;

} identifier;

The components of the structure are encoded in the order of their declaration in

the structure. Each component’s size is a multiple of four bytes, though the com-

ponents may be different sizes.

microsystems
Revision A, of 27 March 1990

138 Protocol Specifications

Discriminated Union

Void

Structure

+
1 + . . .

I
component A

|
component B | . .

.

-I 1 (. ' _ '

A discriminated union is a type composed of a discriminant followed by a type

selected from a set of prearranged types according to the value of the discrim-

inant. The type of discriminant is either "int", "unsigned int", or an enumerated

type, such as "bool". The component types are called "arms" of the union, and

are preceded by the value of the discriminant which implies their encoding.

Discriminated unions are declared as follows:

union switch (discriminant-declaration) {

case discriminant-value-A:
arm-declaration-A;
case discriminant-value-B

:

arm-declaration-B;

default: default-declaration;
} identifier;

Each "case" keyword is followed by a legal value of the discriminant. The
default arm is optional. If it is not specified, then a valid encoding of the union

cannot take on unspecified discriminant values. The size of the implied arm is

always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by the encoding

of the implied arm.

Discriminated Union

0 12 3

+ + + + + + + + +

1
discriminant

|
implied arm

|

H 1 1 1 1 1 1 1 h

I

< 4 bytes >|

An XDR void is a O-byte quantity. Voids are useful for describing operations

that take no data as input or no data as output. They are also useful in unions,

where some arms may contain data and others do not. The declaration is simply

as follows:

void;

Voids are illustrated as follows:

++

I I

++
—><— 0 bytes

Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 139

Constant The data declaration for a constant follows this form:

const name-identifier = n;

"const" is used to define a symbolic name for a constant; it does not declare any

data. The symbolic constant may be used anywhere a regular constant may be

used. For example, the following defines a symbolic constant DOZEN, equal to

12 .

const DOZEN = 12;

Typedef "typedef ' does not declare any data either, but serves to define new identifiers for

declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the

typedef. For example, the following defines a new type called "eggbox" using an

existing type called "egg":

typedef egg eggbox [DOZEN]

;

Variables declared using the new type name have the same type as the new type

name would have in the typedef, if it was considered a variable. For example,

the following two declarations are equivalent in declaring the variable

"fresheggs":

eggbox fresheggs;
egg fresheggs [DOZEN]

;

When a typedef involves a struct, enum, or union definition, there is another (pre-

ferred) syntax that may be used to define the same type. In general, a typedef of

the following form:

typedef «struct, union, or enum definition» identifier;

may be converted to the alternative form by removing the "typedef' part and

placing the identifier after the "struct", "union", or "enum" keyword, instead of at

the end. For example, here are the two ways to define the type "bool":

typedef enum { /* using typedef */

FALSE = 0,

TRUE = 1

} bool;

enum bool { /* preferred alternative */

FALSE = 0,

TRUE = 1

} ;

The reason this syntax is preferred is one does not have to wait until the end of a

declaration to figure out the name of the new type.

«>sun
Xr microsystems

Revision A, of 27 March 1990

140 Protocol Specifications

Optional-data Optional-data is one kind of union that occurs so frequently that we give it a spe-

cial syntax of its own for declaring it. It is declared as follows:

type-name identifier;

This is equivalent to the following union:

union switch (bool opted) {

case TRUE:
type-name element;
case FALSE:
void;

} identifier;

It is also equivalent to the following variable-length array declaration, since the

boolean "opted" can be interpreted as the length of the array:

type-name identifier<l>;

Optional-data is not so interesting in itself, but it is very useful for describing

recursive data-structures such as linked-lists and trees. For example, the follow-

ing defines a type "stringlist" that encodes lists of arbitrary length strings:

struct *stringlist {

string itemO;
stringlist next;

}

;

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {

case TRUE:
struct {

string itemO;
stringlist next;

} element;
case FALSE:

void;

}

;

or as a variable-length array:

struct stringlist<l> {

string itemO;
stringlist next;

}

;

Both of these declarations obscure the intention of the stringlist type, so the

optional-data declaration is preferred over both of them. The optional-data type

also has a close correlation to how recursive data structures are represented in

high-level languages such as Pascal or C by use of pointers. In fact, the syntax is

the same as that of the C language for pointers.

#SHE
microsystems

Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 141

Areas for Future

Enhancement

6.4. Discussion

Why a Language for

Describing Data?

Why Only one Byte-Order for

an XDR Unit?

Why does XDR use Big-

Endian Byte-Order?

Why is the XDR Unit Four

Bytes Wide?

The XDR standard lacks representations for bit fields and bitmaps, since the stan-

dard is based on bytes. Also missing are packed (or binary-coded) decimals.

The intent of the XDR standard was not to describe every kind of data that peo-

ple have ever sent or will ever want to send from machine to machine. Rather, it

only describes the most commonly used data-types of high-level languages such

as Pascal or C so that applications written in these languages will be able to com-

municate easily over some medium.

One could imagine extensions to XDR that would let it describe almost any

existing protocol, such as TCP. The minimum necessary for this are support for

different block sizes and byte-orders. The XDR discussed here could then be

considered the 4-byte big-endian member of a larger XDR family.

There are many advantages in using a data-description language such as XDR
versus using diagrams. Languages are more formal than diagrams and lead to

less ambiguous descriptions of data. Languages are also easier to understand and

allow one to think of other issues instead of the low-level details of bit-encoding.

Also, there is a close analogy between the types ofXDR and a high-level

language such as C or Pascal. This makes the implementation ofXDR encoding

and decoding modules an easier task. Finally, the language specification itself is

an ASCII string that can be passed from machine to machine to perform on-the-

fly data interpretation.

Supporting two byte-orderings requires a higher level protocol for determining in

which byte-order the data is encoded. Since XDR is not a protocol, this can’t be

done. The advantage of this, though, is that data in XDR format can be written

to a magnetic tape, for example, and any machine will be able to interpret it,

since no higher level protocol is necessary for determining the byte-order.

Yes, it is unfair, but having only one byte-order means you have to be unfair to

somebody. Many architectures, such as the Motorola 68000 and IBM 370, sup-

port the big-endian byte-order.

There is a tradeoff in choosing the XDR unit size. Choosing a small size such as

two makes the encoded data small, but causes alignment problems for machines

that aren’t aligned on these boundaries. A large size such as eight means the data

will be aligned on virtually every machine, but causes the encoded data to grow

too big. We chose four as a compromise. Four is big enough to support most

architectures efficiently, except for rare machines such as the eight-byte aligned

Cray. Four is also small enough to keep the encoded data restricted to a reason-

able size.

©sun
microsystems

Revision A, of 27 March 1990

142 Protocol Specifications

Why must Variable-Length

Data be Padded with Zeros?

Why is there No Explicit

Data-Typing?

6.5. The XDR Language
Specification

Notational Conventions

"a " "

Lexical Notes

It is desirable that the same data encode into the same thing on all machines, so

that encoded data can be meaningfully compared or checksummed. Forcing the

padded bytes to be zero ensures this.

Data-typing has a relatively high cost for what small advantages it may have.

One cost is the expansion of data due to the inserted type fields. Another is the

added cost of interpreting these type fields and acting accordingly. And most

protocols already know what type they expect, so data-typing supplies only

redundant information. However, one can still get the benefits of data-typing

using XDR. One way is to encode two things: first a string which is the XDR
data description of the encoded data, and then the encoded data itself. Another

way is to assign a value to all the types in XDR, and then define a universal type

which takes this value as its discriminant and for each value, describes the

corresponding data type.

This specification uses an extended Backus-Naur Form notation for describing

the XDR language. Here is a brief description of the notation:

1. The characters !,(,),[,], , and * are special.

2. Terminal symbols are strings of any characters surrounded by double quotes.

3. Non-terminal symbols are strings of non-special characters.

4. Alternative items are separated by a vertical bar (|
).

5. Optional items are enclosed in brackets.

6. Items are grouped together by enclosing them in parentheses.

7. A * following an item means 0 or more occurrences of that item.

For example, consider the following pattern:

very" (", " " very")* [" cold " "and"] " rainy " ("day"
|
"night")

An infinite number of strings match this pattern. A few of them are:

"a very rainy day"
"a very, very rainy day"
"a very cold and rainy day"
"a very, very, very cold and rainy night"

1. Comments begin with ’/*’ and terminate with

2. White space serves to separate items and is otherwise ignored.

3. An identifier is a letter followed by an optional sequence of letters, digits or

underbar The case of identifiers is not ignored.

Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 143

4. A constant is a sequence of one or more decimal digits, optionally preceded

by a minus-sign

Syntax Information declaration:
type-specifier identifier
I
type-specifier identifier "[" value "]"

I
type-specifier identifier "<"

[value]
">"

|
"opaque" identifier "[" value "]"

|
"opaque" identifier "<"

[value]
">"

I
"string" identifier "<"

[value]
">"

|
type-specifier "*" identifier

|
"void"

value

:

constant

I
identifier

type-specifier

:

["unsigned"] "int"

I ["unsigned"] "hyper"

I
"float"

I
"double"

I
"bool"

I enum-type-spec
I
struct-type-spec

I union-type-spec
I
identifier

enum-type-spec

:

"enum" enum-body

enum-body

:

II

{
II

{ identifier "=" value)

(identifier "=" value)*
II

}
II

struct-type-spec

:

"struct" struct-body

struct-body

:

II

{
II

(declaration)

(declaration)*
i

j
ii

union-type-spec

:

"union" union-body

union-body:
"switch" " (" declaration ")" "{"

< "case" value ":" declaration)

("case" value declaration)*

sun
microsystems

Revision A, of 27 March 1990

144 Protocol Specifications

["default" declaration]

constant-def

:

"const" identifier "=" constant

type-def

:

"typedef" declaration
|
"enum" identifier enum-body

I
"struct" identifier struct-body

1
"union" identifier union-body

definition:
type-def

I
constant-def

specification

:

definition *

Syntax Notes
1. The following are keywords and cannot be used as identifiers: "bool",

"case", "const", "default", "double", "enum", "float", "hyper", "opaque",

"string", "struct", "switch", "typedef', "union", "unsigned" and "void".

2. Only unsigned constants may be used as size specifications for arrays. If an

identifier is used, it must have been declared previously as an unsigned con-

stant in a "const" definition.

3. Constant and type identifiers within the scope of a specification are in the

same name space and must be declared uniquely within this scope.

4. Similarly, variable names must be unique within the scope of struct and

union declarations. Nested struct and union declarations create new scopes.

5. The discriminant of a union must be of a type that evaluates to an integer.

That is, "int", "unsigned int", "bool", an enumerated type or any typedefed

type that evaluates to one of these is legal. Also, the case values must be

one of the legal values of the discriminant. Finally, a case value may not be

specified more than once within the scope of a union declaration.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 6— External Data Representation Standard: Protocol Specification 145

6.6. An Example of an Here is a short XDR data description of a thing called a "file", which might be

XDR Data Description used to transfer files from one machine to another.

const MAXUSERNAME = 32; /* max length ofa user name * /

const MAXFILELEN = 65535; /* max length ofafile */

const MAXNAMELEN = 255; /* max length ofa file name * /

/*

* Types offiles:
*/

enum filekind {

TEXT = 0,

DATA = 1,

EXEC = 2

} ;

/*

* File information, per kind offile:
*/

union filetype switch (filekind kind) {

case TEXT:
void; / * no extra information * /

case DATA:
string creator<MAXNAMELEN>; /* data creator */

case EXEC:
string interpretor<MAXNAMELEN>; /* program interpreter */

};

/*

* A complete file:

*/

struct file {

string filename<MAXNAMELEN>; /* name offile *

/

filetype type ; / * info aboutfile
* /

string owner<MAXUSERNAME>; /* owner offile */

opaque data<MAXFILELEN>; /* file data */

} ;

Suppose now that there is a user named "john" who wants to store his lisp pro-

gram "sillyprog" that contains just the data "(quit)". His file would be encoded as

follows:

/ * ascii data * /

/* raw data */

/ * executable * /

ffsun
microsystems

Revision A, of 27 March 1990

146 Protocol Specifications

Offset Hex Bytes ASCII Description

0 00 00 00 09 Length of filename = 9

4 73 69 6c 6c sill Filename characters

8 79 70 72 6f ypro ... and more characters ...

12 67 00 00 00 Q" and 3 zero-bytes of fill

16 00 00 00 02 • • • • Filekind is EXEC = 2

20 00 00 00 04 • • . . Length of interpreter = 4

24 6c 69 73 70 lisp Interpreter characters

28 00 00 00 04 Length of owner = 4

32 6a 6f 68 6e john Owner characters

36 00 00 00 06 • • • • Length of file data = 6

40 28 71 75 69 (qui File data bytes ...

44 74 29 00 00 t) and 2 zero-bytes of fill

6.7. References [1] Brian W. Kemighan & Dennis M. Ritchie, "The C Programming Language",

Bell Laboratories, Murray Hill, New Jersey, 1978.

[2] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer,

October 1981.

[3] "IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE Standard

754-1985, Institute of Electrical and Electronics Engineers, August 1985.

[4] "Courier: The Remote Procedure Call Protocol", XEROX Corporation, XSIS

038112, December 1981.

Revision A, of 27 March 1990

Remote Procedure Calls: Protocol

Specification

7.1. Status of this Memo Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others

are using. It has been designated RFC 1050 by the ARPA-Intemet Network
Information Center.

7.2. Introduction This chapter specifies a message protocol used in implementing Sun’s Remote

Procedure Call (RPC) package. (The message protocol is specified with the

External Data Representation (XDR) language. See the External Data Represen-

tation Standard: Protocol Specification for the details. Here, we assume that the

reader is familiar with XDR and do not attempt to justify it or its uses). The
paper by Birrell and Nelson [1] is recommended as an excellent background to

and justification of RPC.

Terminology This chapter discusses servers, services, programs, procedures, clients, and ver-

sions. A server is a piece of software where network services are implemented.

A network service is a collection of one or more remote programs. A remote

program implements one or more remote procedures; the procedures, their

parameters, and results are documented in the specific program’s protocol

specification (see the Port Mapper Program Protocol, below, for an example).

Network clients are pieces of software that initiate remote procedure calls to ser-

vices. A server may support more than one version of a remote program in order

to be forward compatible with changing protocols.

For example, a network file service may be composed of two programs. One
program may deal with high-level applications such as file system access control

and locking. The other may deal with low-level file 10 and have procedures like

"read" and "write". A client machine of the network file service would call the

procedures associated with the two programs of the service on behalf of some

user on the client machine.

The RPC Model The remote procedure call model is similar to the local procedure call model. In

the local case, the caller places arguments to a procedure in some well-specified

location (such as a result register). It then transfers control to the procedure, and

eventually gains back control. At that point, the results of the procedure are

extracted from the well-specified location, and the caller continues execution.

The remote procedure call is similar, in that one thread of control logically winds

through two processes—one is the caller’s process, the other is a server’s

147 Revision A, of 27 March 1990

148 Protocol Specifications

Transports and Semantics

process. That is, the caller process sends a call message to the server process and

waits (blocks) for a reply message. The call message contains the procedure’s

parameters, among other things. The reply message contains the procedure’s

results, among other things. Once the reply message is received, the results of

the procedure are extracted, and caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message.

When one arrives, the server process extracts the procedure’s parameters, com-

putes the results, sends a reply message, and then awaits the next call message.

Note that in this model, only one of the two processes is active at any given time.

However, this model is only given as an example. The RPC protocol makes no

restrictions on the concurrency model implemented, and others are possible. For

example, an implementation may choose to have RPC calls be asynchronous, so

that the client may do useful work while waiting for the reply from the server.

Another possibility is to have the server create a task to process an incoming

request, so that the server can be free to receive other requests.

The RPC protocol is independent of transport protocols. That is, RPC does not

care how a message is passed from one process to another. The protocol deals

only with specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of relia-

bility and that the application must be aware of the type of transport protocol

underneath RPC. If it knows it is running on top of a reliable transport such as

TCP/IP[6], then most of the work is already done for it. On the other hand, if it

is running on top of an unreliable transport such as UDP/IP[7], it must implement

is own retransmission and time-out policy as the RPC layer does not provide this

service.

Because of transport independence, the RPC protocol does not attach specific

semantics to the remote procedures or their execution. Semantics can be inferred

from (but should be explicitly specified by) the underlying transport protocol.

For example, consider RPC running on top of an unreliable transport such as

UDP/IP. If an application retransmits RPC messages after short time-outs, the

only thing it can infer if it receives no reply is that the procedure was executed

zero or more times. If it does receive a reply, then it can infer that the procedure

was executed at least once.

A server may wish to remember previously granted requests from a client and not

regrant them in order to insure some degree of execute-at-most-once semantics.

A server can do this by taking advantage of the transaction ID that is packaged

with every RPC request. The main use of this transaction is by the client RPC
layer in matching replies to requests. However, a client application may choose

to reuse its previous transaction ID when retransmitting a request. The server

application, knowing this fact, may choose to remember this ID after granting a

request and not regrant requests with the same ID in order to achieve some

degree of execute-at-most-once semantics. The server is not allowed to examine

this ID in any other way except as a test for equality.

On the other hand, if using a reliable transport such as TCP/IP, the application

can infer from a reply message that the procedure was executed exactly once, but

microsystems
Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 149

NOTE

Binding and Rendezvous

Independence

Authentication

7.3. RPC Protocol

Requirements

if it receives no reply message, it cannot assume the remote procedure was not

executed. Note that even if a connection-oriented protocol like TCP is used, an

application still needs time-outs and reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or connection-

oriented protocols. For example, a request-reply protocol such as VMTP[2] is

perhaps the most natural transport for RPC.

At Sun, RPC is currently implemented on top ofboth TCP/IP and UDP/IP tran-

sports.

The act of binding a client to a service is NOT part of the remote procedure call

specification. This important and necessary function is left up to some higher-

level software. (The software may use RPC itself—see the Port Mapper Pro-

gram Protocol, below).

Implementors should think of the RPC protocol as the jump-subroutine instruc-

tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader

itself uses JSR to accomplish its task. Likewise, the network makes RPC useful,

using RPC to accomplish this task.

The RPC protocol provides the fields necessary for a client to identify itself to a

service and vice-versa. Security and access control mechanisms can be built on

top of the message authentication. Several different authentication protocols can

be supported. A field in the RPC header indicates which protocol is being used.

More information on specific authentication protocols can be found in the

Authentication Protocols, below.

The RPC protocol must provide for the following:

1. Unique specification of a procedure to be called.

2. Provisions for matching response messages to request messages.

3. Provisions for authenticating the caller to service and vice-versa.

Besides these requirements, features that detect the following are worth support-

ing because of protocol roll-over errors, implementation bugs, user error, and net-

work administration:

1. RPC protocol mismatches.

2. Remote program protocol version mismatches.

3. Protocol errors (such as misspecification of a procedure’s parameters).

4. Reasons why remote authentication failed.

5. Any other reasons why the desired procedure was not called.

#sun
microsystems

Revision A, of 27 March 1990

150 Protocol Specifications

Programs and Procedures The RPC call message has three unsigned fields: remote program number, remote

program version number, and remote procedure number. The three fields

uniquely identify the procedure to be called. Program numbers are administered

by some central authority (like Sun). Once an implementor has a program

number, he can implement his remote program; the first implementation would

most likely have the version number of 1. Because most new protocols evolve

into better, stable, and mature protocols, a version field of the call message

identifies which version of the protocol the caller is using. Version numbers

make speaking old and new protocols through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are

documented in the specific program’s protocol specification. For example, a file

service’s protocol specification may state that its procedure number 5 is "read"

and procedure number 12 is "write".

Just as remote program protocols may change over several versions, the actual

RPC message protocol could also change. Therefore, the call message also has

in it the RPC version number, which is always equal to two for the version of

RPC described here.

The reply message to a request message has enough information to distinguish

the following error conditions:

1. The remote implementation of RPC does speak protocol version 2. The
lowest and highest supported RPC version numbers are returned.

2. The remote program is not available on the remote system.

3. The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are returned.

4. The requested procedure number does not exist. (This is usually a caller side

protocol or programming error.)

5. The parameters to the remote procedure appear to be garbage from the

server’s point of view. (Again, this is usually caused by a disagreement

about the protocol between client and service.)

Authentication Provisions for authentication of caller to service and vice-versa are provided as a

part of the RPC protocol. The call message has two authentication fields, the

credentials and verifier. The reply message has one authentication field, the

response verifier. The RPC protocol specification defines all three fields to be the

following opaque type:

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 151

enum auth_flavor {

AUTH_NULL = 0

,

AUTH_UNIX = 1,

AUTH_SHORT = 2,

AUTH_DES = 3

/ * and more to be defined * /

In-

struct opaque_auth {

auth_flavor flavor;
opaque body<400>;

} ;

In simple English, any opaque_auth structure is an auth_flavor enumera-

tion followed by bytes which are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication

fields is specified by individual, independent authentication protocol

specifications. (See Authentication Protocols , below, for definitions of the vari-

ous authentication protocols.)

If authentication parameters were rejected, the response message contains infor-

mation stating why they were rejected.

Program Number Assignment Program numbers are given out in groups of 0x20000000 (decimal

536870912) according to the following chart:

Program Numbers Description

0 - lfffffff Defined by Sun

20000000 - 3fffffff Defined by user

40000000 - 5fffffff Transient

60000000 - 7fffffff Reserved

80000000 - 9fffffff Reserved

aOOOOOOO - bfffffff Reserved

cOOOOOOO - dfffffff Reserved

eOOOOOOO - ffffffff Reserved

The first group is a range of numbers administered by Sun Microsystems and

should be identical for all sites. The second range is for applications peculiar to a

particular site. This range is intended primarily for debugging new programs.

When a site develops an application that might be of general interest, that appli-

cation should be given an assigned number in the first range. The third group is

for applications that generate program numbers dynamically. The final groups

are reserved for future use, and should not be used.

Other Uses of the RPC
Protocol

The intended use of this protocol is for calling remote procedures. That is, each

call message is matched with a response message. However, the protocol itself is

a message-passing protocol with which other (non-RPC) protocols can be imple-

mented. Sun currently uses, or perhaps abuses, the RPC message protocol for the

following two (non-RPC) protocols: batching (or pipelining) and broadcast RPC.

Revision A, of 27 March 1990

152 Protocol Specifications

These two protocols are discussed but not defined below.

Batching Batching allows a client to send an arbitrarily large sequence of call messages to

a server; batching typically uses reliable byte stream protocols (like TCP/IP) for

its transport. In the case of batching, the client never waits for a reply from the

server, and the server does not send replies to batch requests. A sequence of

batch calls is usually terminated by a legitimate RPC in order to flush the pipe-

line (with positive acknowledgement).

Broadcast RPC In broadcast RPC-based protocols, the client sends a broadcast packet to the net-

work and waits for numerous replies. Broadcast RPC uses unreliable, packet-

based protocols (like UDP/IP) as its transports. Servers that support broadcast

protocols only respond when the request is successfully processed, and are silent

in the face of errors. Broadcast RPC uses the Port Mapper RPC service to

achieve its semantics. See the Port Mapper Program Protocol, below, for more
information.

7.4. The RPC Message This section defines the RPC message protocol in the XDR data description

Protocol language. The message is defined in a top-down style.

enum msg_type {

CALL = 0

,

REPLY = 1

1 ;

/*

* A reply to a call message can take on twoforms:
* The message was either accepted or rejected.

*1

enum reply_stat {

MSG_ACCEPTED = 0,

MSG_DENIED = 1

1;

/*

* Given that a call message was accepted, thefollowing is the

* status ofan attempt to call a remote procedure.

*1

enum accept_stat {

SUCCESS = 0, /* RPC executed successfully */

PR0G_UNAVAIL =1, /* remote hasn t exported program */

PROG_MI SMATCH = 2, /* remote can t support version# */

PROC_UNAVAIL =3, /* program can’ t support procedure * /

GARBAGE_ARGS =4 /* procedure can’ t decode params */

1 ;

/*

* Reasons why a call message was rejected:

*/

enum reject_stat {

RPC_MI SMATCH = 0, /* RPC version number != 2 */

AUTH_ERROR =1 /* remote can’ t authenticate caller * /

A sun
Nr microsystems

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 153

1 ;

/*

* Why authenticationfailed:

*/

enum auth_stat {

AUTH_BADCRED = 1

,

AUTH_REJECTEDCRED = 2,

AUTH_BADVERF = 3,

AUTH_REJECTEDVERF = 4,

AUTH_TOOWEAK = 5

1 ;

/ * bad credentials * /

/ * client must begin new session * /

/* bad verifier * /

/ * verifier expired or replayed * /

/ * rejectedfor security reasons * /

/*

* The message:

* .A// messages start with a transaction identifier, xid,

* followed by a two-armed discriminated union. The union’s

* discriminant is a msgjype which switches to one of the two
* types of the message. The xid ofa REPLY message always
* matches that ofthe initiating CALL message. NB: The xid

* field is only usedfor clients matching reply messages with

* call messages orfor servers detecting retransmissions; the

* service side cannot treat this id as any type ofsequence

* number.

*1

struct rpc_msg {

unsigned int xid;
union switch (msg_type mtype) {

case CALL:
call_body cbody;

case REPLY:
reply_body rbody;

} body;

} ;

/*

* Body ofan RPC request call:

* In version 2 of the RPC protocol specification, rpcvers must

* be equal to 2. The fields prog, vers, and proc specify the

* remote program, its version number, and the procedure within

* the remote program to be called. After these fields are two

* authentication parameters: cred (authentication credentials

)

* and verf (authentication verifier). The two authentication

* parameters arefollowed by the parameters to the remote

* procedure, which are specified by the specific program

* protocol.

*/

struct call_body {

unsigned int rpcvers; /* must be equal to two (2)
* /

unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;

sun
microsystems

Revision A, of 27 March 1990

154 Protocol Specifications

} ;

opaque_auth verf;

/ * procedure specific parameters start here * /

/*

* Body ofa reply to an RPC request:

* The call message was either accepted or rejected.

*/

union reply_body switch (reply_stat stat) {

case MSG_ACCEPTED:
accepted_reply areply;

case MSG_DENIED:
re jected_reply rreply;

} reply;

/*

* Reply to an RPC request that was accepted by the server:

* there could be an error even though the request was accepted.

* The firstfield is an authentication verifier that the server

* generates in order to validate itself to the caller. It is

* followed by a union whose discriminant is an enum
* accept_stat. The SUCCESS arm ofthe union is protocol
*
specific. The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGP

* arms of the union are void. The PROG_MI SMATCH arm specifies

* the lowest and highest version numbers of the remote program
* supported by the server.

*/

struct accepted_reply {

opaque_auth verf;
union switch (accept_stat stat) {

case SUCCESS:
opaque results [0]

;

/ * procedure-specific results start here * /

case PROG_MI SMATCH:
struct {

unsigned int low;

unsigned int high;

} mismatch_inf o;

default

:

/*

* Void. Cases include PROGJJNAVAIL, PROC_UNAVAlL,
* and GARBAGE_ARGS

.

*/

void;

} reply_data;

) ;

/*

* Reply to an RPC request that was rejected by the server:

* The request can be rejectedfor two reasons: either the

* server is not running a compatible version of the RPC
* protocol (RPC_MI SMATCH), or the server refuses to

* authenticate the caller (AUTH_ERRORj. In case ofan RPC

#>sun
V* microsystems

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 155

* version mismatch, the server returns the lowest and highest

* supportedRPC version numbers. In case ofrefused

* authentication,failure status is returned.

*1

union re jected_reply switch (reject_stat stat) {

case RPC_MI SMATCH

:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;
case AUTH_ERROR:

auth_stat stat;

} ;

7.5. Authentication

Protocols

Null Authentication

UNIX Authentication

As previously stated, authentication parameters are opaque, but open-ended to

the rest of the RPC protocol. This section defines some "flavors" of authentica-

tion implemented at (and supported by) Sun. Other sites are free to invent new

authentication types, with the same rules of flavor number assignment as there is

for program number assignment.

Often calls must be made where the caller does not know who he is or the server

does not care who the caller is. In this case, the flavor value (the discriminant of

the opaque_auth’s union) of the RPC message’s credentials, verifier, and

response verifier is AUTH_NULL. The bytes of the opaque_auth’s body are

undefined. It is recommended that the opaque length be zero.

The caller of a remote procedure may wish to identify himself as he is identified

on a UNIX system. The value of the credential’s discriminant of an RPC call

message is AUTH_UNIX. The bytes of the credential’s opaque body encode the

following structure:

struct auth_unix {

unsigned int stamp;
string machinename<255>;
unsigned int uid;

unsigned int gid;

unsigned int gids<10>;

}

;

The stamp is an arbitrary ID which the caller machine may generate. The

machinename is the name of the caller’s machine (like "krypton"). The uid is

the caller’s effective user ID. The gid is the caller’s effective group ID. The

gids is a counted array of groups which contain the caller as a member. The

verifier accompanying the credentials should be of auth_null (defined above).

The value of the discriminant of the response verifier received in the reply mes-

sage from the server may be AUTH_null or AUTH_SHORT. In the case of

AUTH_SHORT, the bytes of the response verifier’s string encode an opaque struc-

ture. This new opaque structure may now be passed to the server instead of the

original AUTH_UNIX flavor credentials. The server keeps a cache which maps

shorthand opaque structures (passed back by way of an AUTH_SHORT style

•sunV microsystems
Revision A, of 27 March 1990

156 Protocol Specifications

response verifier) to the original credentials of the caller. The caller can save net-

work bandwidth and server cpu cycles by using the new credentials.

The server may flush the shorthand opaque structure at any time. If this happens,

the remote procedure call message will be rejected due to an authentication error.

The reason for the failure will be AUTH_REJECTEDCRED. At this point, the

caller may wish to try the original AUTH_UNIX style of credentials.

DES Authentication UNIX authentication suffers from two major problems:

1. The naming is too UNIX-system oriented.

2. There is no verifier, so credentials can easily be faked.

DES authentication attempts to fix these two problems.

Naming The first problem is handled by addressing the caller by a simple string of charac-

ters instead of by an operating system specific integer. This string of characters

is known as the "netname" or network name of the caller. The server is not

allowed to interpret the contents of the caller’s name in any other way except to

identify the caller. Thus, netnames should be unique for every caller in the inter-

net.

It is up to each operating system’s implementation of DES authentication to gen-

erate netnames for its users that insure this uniqueness when they call upon
remote servers. Operating systems already know how to distinguish users local

to their systems. It is usually a simple matter to extend this mechanism to the

network. For example, a UNIX user at Sun with a user ID of 515 might be

assigned the following netname: "unix.515@sun.com". This netname contains

three items that serve to insure it is unique. Going backwards, there is only one

naming domain called "sun.com" in the internet. Within this domain, there is

only one UNIX user with user ID 5 15. However, there may be another user on
another operating system, for example VMS, within the same naming domain
that, by coincidence, happens to have the same user ID. To insure that these two
users can be distinguished we add the operating system name. So one user is

"unix.515@sun.com" and the other is "vms.515@sun.com".

The first field is actually a naming method rather than an operating system name.
It just happens that today there is almost a one-to-one correspondence between
naming methods and operating systems. If the world could agree on a naming
standard, the first field could be the name of that standard, instead of an operating

system name.

DES Authentication Verifiers Unlike UNIX authentication, DES authentication does have a verifier so the

server can validate the client’s credential (and vice-versa). The contents of this

verifier is primarily an encrypted timestamp. The server can decrypt this times-

tamp, and if it is close to what the real time is, then the client must have

encrypted it correctly. The only way the client could encrypt it correctly is to

know the "conversation key" of the RPC session. And if the client knows the

conversation key, then it must be the real client.

$>sun
microsystems

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 157

The conversation key is a DES [5] key which the client generates and notifies the

server of in its first RPC call. The conversation key is encrypted using a public

key scheme in this first transaction. The particular public key scheme used in

DES authentication is Diffie-Hellman [3] with 192-bit keys. The details of this

encryption method are described later.

The client and the server need the same notion of the current time in order for all

of this to work. If network time synchronization cannot be guaranteed, then the

client can synchronize with the server before beginning the conversation, perhaps

by consulting the Internet Time Server (TIME[4]).

The way a server determines if a client timestamp is valid is somewhat compli-

cated. For any other transaction but the first, the server just checks for two

things:

1. the timestamp is greater than the one previously seen from the same client.

2. the timestamp has not expired.

A timestamp is expired if the server’s time is later than the sum of the client’s

timestamp plus what is known as the client’s "window". The "window" is a

number the client passes (encrypted) to the server in its first transaction. You can

think of it as a lifetime for the credential.

This explains everything but the first transaction. In the first transaction, the

server checks only that the timestamp has not expired. If this was all that was

done though, then it would be quite easy for the client to send random data in

place of the timestamp with a fairly good chance of succeeding. As an added

check, the client sends an encrypted item in the first transaction known as the

"window verifier" which must be equal to the window minus 1, or the server will

reject the credential.

The client too must check the verifier returned from the server to be sure it is leg-

itimate. The server sends back to the client the encrypted timestamp it received

from the client, minus one second. If the client gets anything different than this,

it will reject it.

Nicknames and Clock

Synchronization

After the first transaction, the server’s DES authentication subsystem returns in

its verifier to the client an integer "nickname" which the client may use in its

further transactions instead of passing its netname, encrypted DES key and win-

dow every time. The nickname is most likely an index into a table on the server

which stores for each client its netname, decrypted DES key and window.

Though they originally were synchronized, the client’s and server’s clocks can

get out of sync again. When this happens the client RPC subsystem most likely

will get back RPC_AUTHERROR at which point it should resynchronize.

A client may still get the RPC_AUTHERROR error even though it is synchronized

with the server. The reason is that the server’s nickname table is a limited size,

and it may flush entries whenever it wants. A client should resend its original

credential in this case and the server will give it a new nickname. If a server

crashes, the entire nickname table gets flushed, and all clients will have to resend

their original credentials.

Asun
mirmcuetomemicrosystems

Revision A, of 27 March 1990

158 Protocol Specifications

DES Authentication Protocol /*

(in XDR language) * There are two kinds of credentials: one in which the client uses
* itsfull network name, and one in which it uses its "nickname"

* (just an unsigned integer) given to it by the server. The
* client must use itsfullname in itsfirst transaction with the

* server, in which the server will return to the client its

* nickname. The client may use its nickname in allfurther

* transactions with the server. There is no requirement to use the

* nickname, but it is wise to use itfor performance reasons.

*1

enum authdes_namekind {

ADN_FULLNAME = 0,

ADN_NICKNAME = 1

}

;

/*

* A 64-bit block ofencrypted DES data

*/

typedef opaque des_block [8]

;

/*

* Maximum length ofa network user’s name
*1

const MAXNETNAMELEN = 255;

/*

* A fullname contains the network name of the client, an encrypted
* conversation key and the window. The window is actually a
* lifetimefor the credential. If the time indicated in the

* verifier timestamp plus the window has past, then the server

* should expire the request and not grant it. To insure that

* requests are not replayed, the server should insist that

* timestamps are greater than the previous one seen, unless it is

* the first transaction. In the first transaction, the server

* checks instead that the window verifier is one less than the

* window.

*/

struct authdes_fullname {

string name<MAXNETNAMELEN>; /* name of client * /

des_block key; /* PK encrypted conversation key * /

unsigned int window; /* encrypted window *

/

)

;

/*

* A credential is either afullname or a nickname
*/

union authdes_cred switch (authdes_namekind adc_namekind) {

case ADN_FULLNAME

:

authdes_fullname adc_fullname;
case ADN_NICKNAME

:

unsigned int adc_nickname;

sun
microsystems

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 159

Diffie-Hellman Encryption

/*

* A timestamp encodes the time since midnight, January 1, 1970.

*1

struct timestamp {

unsigned int seconds; /* seconds*/

unsigned int useconds; /* and microseconds *

/

1;

I*

* Verifier: client variety

* The window verifier is only used in the first transaction. In

* conjunction with afullname credential, these items are packed

* into thefollowing structure before being encrypted:

*

* struct {

* adv_time s tamp ;
-- one DES block

* adc_fullname . window; — one halfDES block

* adv_winverf; — one halfDES block

*
1

* This structure is encrypted using CBC mode encryption with an

* input vector ofzero. All other encryptions of timestamps use

* ECB mode encryption.

*1

struct authdes_verf_clnt {

timestamp adv_timestamp; /* encrypted timestamp */

unsigned int adv_winverf; /* encrypted window verifier * /

1

;

/*

* Verifier: server variety

* The server returns (encrypted) the same timestamp the client

* gave it minus one second. It also tells the client its nickname

* to be used in future transactions (unencrypted).

*1

struct authdes_verf_svr {

timestamp adv_timeverf ; /* encrypted verifier */

unsigned int adv_nickname; /* new nicknamefor client * /

1 ;

In this scheme, there are two constants, BASE and MODULUS. The particular

values Sun has chosen for these for the DES authentication protocol are:

const BASE =3;
const MODULUS = nd4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b

The way this scheme works is best explained by an example. Suppose there are

two people "A" and "B" who want to send encrypted messages to each other. So,

A and B both generate "secret" keys at random which they do not reveal to any-

one. Let these keys be represented as SK(A) and SK(B). They also publish in a

public directory their "public" keys. These keys are computed as follows:

®sun
Nr microsystems

Revision A, of 27 March 1990

1 60 Protocol Specifications

PK (A) = (BASE ** SK (A)) mod MODULUS
PK (B) = (BASE ** SK (B)) mod MODULUS

The "**" notation is used here to represent exponentiation. Now, both A and B
can arrive at the "common" key between them, represented here as CK(A, B),

without revealing their secret keys.

A computes:

CK (A, B) = (PK (B) ** SK (A)) mod MODULUS

while B computes:

CK (A, B) = (PK (A) ** SK (B)) mod MODULUS

These two can be shown to be equivalent:

(PK (B) ** SK (A)) mod MODULUS = (PK(A) ** SK (B)) mod MODULUS

We drop the "mod MODULUS" parts and assume modulo arithmetic to simplify

things:

PK (B) ** SK (A) = PK (A) ** SK (B)

Then, replace PK(B) by what B computed earlier and likewise for PK(A).

((BASE ** SK (B))
** SK (A) = (BASE ** SK(A)) ** SK(B)

which leads to:

BASE ** (SK (A) * SK (B))
= BASE ** (SK(A) * SK (B)

)

This common key CK(A, B) is not used to encrypt the timestamps used in the

protocol. Rather, it is used only to encrypt a conversation key which is then used

to encrypt the timestamps. The reason for doing this is to use the common key as

little as possible, for fear that it could be broken. Breaking the conversation key

is a far less serious offense, since conversations are relatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet the common key is

192 bits. To reduce the number of bits, 56 bits are selected from the common
key as follows. The middle-most 8-bytes are selected from the common key, and

then parity is added to the lower order bit of each byte, producing a 56-bit key

with 8 bits of parity.

7.6. Record Marking
Standard

A record is composed of one or more record fragments. A record fragment is a

four-byte header followed by 0 to (2**31) - 1 bytes of fragment data. The bytes

encode an unsigned binary number; as with XDR integers, the byte order is from

highest to lowest. The number encodes two values—a boolean which indicates

whether the fragment is the last fragment of the record (bit value 1 implies the

fragment is the last fragment) and a 31 -bit unsigned binary value which is the

length in bytes of the fragment’s data. The boolean value is the highest-order bit

When RPC messages are passed on top of a byte stream protocol (like TCP/IP), it

is necessary, or at least desirable, to delimit one message from another in order to

detect and possibly recover from user protocol errors. This is called record mark-

ing (RM). Sun uses this RM/TCP/IP transport for passing RPC messages on
TCP streams. One RPC message fits into one RM record.

©sun
microsystems

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 161

7.7. The RPC Language

An Example Service

Described in the RPC
Language

of the header, the length is the 31 low-order bits. (Note that this record

specification is NOT in XDR standard form!)

Just as there was a need to describe the XDR data-types in a formal language,

there is also need to describe the procedures that operate on these XDR data-

types in a formal language as well. We use the RPC Language for this purpose.

It is an extension to the XDR language. The following example is used to

describe the essence of the language.

Here is an example of the specification of a simple ping program.

/*

* Simple ping program
*1

program PING_PROG {

/ * Latest and greatest version * /

version PING_VERS_PINGBACK {

void
PINGPROC_NULL (void) = 0;

/*

* Ping the caller, return the round-trip time

* (in microseconds). Returns -1 if the operation

* timed out.

*1

int
PINGPROC_PINGBACK (void) = 1;

)
= 2 ;

/*

* Original version

*1

version PING_VERS_ORIG {

void
PINGPROC_NULL (void) = 0;

)
= l;

}
= i;

const PING_VERS = 2; /* latest version *

/

The first version described is PING_VERS_PINGBACK with two procedures,

PINGPROC_NULL and PINGPROC_PINGBACK. PINGPROC_NULL takes no

arguments and returns no results, but it is useful for computing round-trip times

from the client to the server and back again. By convention, procedure 0 of any

RPC protocol should have the same semantics, and never require any kind of

authentication. The second procedure is used for the client to have the server do

a reverse ping operation back to the client, and it returns the amount of time (in

microseconds) that the operation used. The next version, ping_vers_ORIG,

is the original version of the protocol and it does not contain

P INGPR0C_P INGBACK procedure. It is useful for compatibility with old client

programs, and as this program matures it may be dropped from the protocol

entirely.

©sun
Xr microsystems

Revision A, of 27 March 1990

1 62 Protocol Specifications

The RPC language is identical to the XDR language, except for the added
definition of a program-def described below.

program-def

:

"program" identifier "{"

version-def
version-def *

iij ii ii_ii constant ";"

version-def

:

"version" identifier "{"

procedure-def
procedure-def *

iij n ii= n constant

procedure-def

:

type-specifier identifier "(" type-specifier ")"
"=" constant

The following keywords are added and cannot be used as identifiers: "pro-

gram" and "version";

A version name cannot occur more than once within the scope of a program
definition. Nor can a version number occur more than once within the scope
of a program definition.

A procedure name cannot occur more than once within the scope of a ver-

sion definition. Nor can a procedure number occur more than once within

the scope of version definition.

Program identifiers are in the same name space as constant and type

identifiers.

Only unsigned constants can be assigned to programs, versions and pro-

cedures.

7.8. Port Mapper Program The port mapper program maps RPC program and version numbers to transport-

Protocol specific port numbers. This program makes dynamic binding of remote pro-

grams possible.

This is desirable because the range of reserved port numbers is very small and the

number of potential remote programs is very large. By running only the port

mapper on a reserved port, the port numbers of other remote programs can be
ascertained by querying the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program will usually

have different port number bindings on different machines, so there is no way to

directly broadcast to all of these programs. The port mapper, however, does have
a fixed port number. So, to broadcast to a given program, the client actually

sends its message to the port mapper located at the broadcast address. Each port

mapper that picks up the broadcast then calls the local service specified by the

client. When the port mapper gets the reply from the local service, it sends the

reply on back to the client.

Syntax Notes 1 .

2 .

4.

5.

The RPC Language
Specification

Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 1 63

Port Mapper Protocol

Specification (in RPC
Language)

const PMAP_PORT = 111; /* portmapper port number * /

/*

* A mapping of (program, version, protocol) to port number

*1

struct mapping {

unsigned int prog;

unsigned int vers;

unsigned int prot;

unsigned int port;

1

;

/*

* Supported valuesfor the "prot"field

*1

const IPPROTO_TCP = 6; /* protocol numberfor TCPHP * /

const IPPROTO_UDP = 17; /* protocol numberfor UDPIIP * /

/*

* A list ofmappings
*/

struct *pmaplist {

mapping map;
pmaplist next;

1;

I*

* Arguments to callit

*1

struct call_args {

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque argsO;
};

/*

* Results of callit

*1

struct call_result {

unsigned int port;

opaque res<>;

1;

I*

* Port mapper procedures
*/

program PMAP_PROG {

version PMAP_VERS {

void
PMAPPROC_NULL (void) = 0;

bool

® sun
microsystems

Revision A, of 27 March 1990

1 64 Protocol Specifications

PMAPPROC_SET (mapping) = l;

bool
PMAPPROC_UNSET (mapping) = 2;

unsigned int
PMAPPROC_GETPORT (mapping) = 3;

pmaplist
PMAPPROC_DUMP (void) = 4;

call_result
PMAPPROC_CALLIT (call_args) = 5;

}
= 2 ;

}
= 100000 ;

Port Mapper Operation The portmapper program currently supports two protocols (UDP/IP and TCP/IP).

The portmapper is contacted by talking to it on assigned port number 111

(SUNRPC [8]) on either of these protocols. The following is a description of
each of the portmapper procedures:

PMAPPROC_NULL

:

This procedure does no work. By convention, procedure zero of any proto-

col takes no parameters and returns no results.

PMAPPROC_SET:
When a program first becomes available on a machine, it registers itself with
the port mapper program on the same machine. The program passes its pro-

gram number "prog", version number "vers", transport protocol number
"prot", and the port "port" on which it awaits service request. The procedure

returns a boolean response whose value is TRUE if the procedure success-

fully established the mapping and FALSE otherwise. The procedure refuses

to establish a mapping if one already exists for the tuple "(prog, vers, prot)".

PMAPPROC_UNSET

:

When a program becomes unavailable, it should unregister itself with the

port mapper program on the same machine. The parameters and results have
meanings identical to those of PMAPPROC_SET. The protocol and port

number fields of the argument are ignored.

PMAPPROCjGETPORT

:

Given a program number "prog", version number "vers", and transport proto-

col number "prot", this procedure returns the port number on which the pro-

gram is awaiting call requests. A port value of zeros means the program has
not been registered. The "port" field of the argument is ignored.

PMAPPROC_DUMP

:

This procedure enumerates all entries in the port mapper’s database. The
procedure takes no parameters and returns a list of program, version, proto-

col, and port values.

PMAPPROC_CALLIT

:

This procedure allows a caller to call another remote procedure on the same

microsystems
Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification 1 65

machine without knowing the remote procedure’s port number. It is

intended for supporting broadcasts to arbitrary remote programs via the

well-known port mapper’s port. The parameters "prog", "vers", "proc", and

the bytes of "args" are the program number, version number, procedure

number, and parameters of the remote procedure. Note:

1. This procedure only sends a response if the procedure was successfully

executed and is silent (no response) otherwise.

2. The port mapper communicates with the remote program using UDP/IP

only.

The procedure returns the remote program’s port number, and the bytes of results

are the results of the remote procedure.

7.9. References [1] Birrell, Andrew D. & Nelson, Bruce Jay; "Implementing Remote Procedure

Cahs"; XEROX CSL-83-7, October 1983.

[2] Cheriton, D.; "VMTP: Versatile Message Transaction Protocol", Preliminary

Version 0.3; Stanford University, January 1987.

[3] Diffie & Heilman; "New Directions in Cryptography"; IEEE Transactions on

Information Theory IT-22, November 1976.

[4] Harrenstien, K.; "Time Server", RFC 738; Information Sciences Institute,

October 1977.

[5] National Bureau of Standards; "Data Encryption Standard"; Federal Informa-

tion Processing Standards Publication 46, January 1977.

[6] Postel, J.; "Transmission Control Protocol - DARPA Internet Program Proto-

col Specification", RFC 793; Information Sciences Institute, September 1981.

[7] Postel, J.; "User Datagram Protocol", RFC 768; Information Sciences Insti-

tute, August 1980.

[8] Reynolds, J. & Postel, J.; "Assigned Numbers", RFC 923; Information Sci-

ences Institute, October 1984.

microsystems
Revision A, of 27 March 1990

Chapter 7— Remote Procedure Calls: Protocol Specification

Revision A, of 27 March 1990

Network File System: Version 2

Protocol Specification

8.1. Status of this Standard Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others

are using. It specifies it in standard ARPA RFC form.

8.2. Introduction The Sun Network Filesystem (NFS) protocol provides transparent remote access

to shared filesystems over local area networks. The NFS protocol is designed to

be machine, operating system, network architecture, and transport protocol

independent. This independence is achieved through the use of Remote Pro-

cedure Call (RPC) primitives built on top of an External Data Representation

(XDR). Implementations exist for a variety of machines, from personal comput-

ers to supercomputers.

The supporting mount protocol allows the server to hand out remote access

privileges to a restricted set of clients. It performs the operating system-specific

functions that allow, for example, to attach remote directory trees to some local

file system.

Remote Procedure Call Sun’s remote procedure call specification provides a procedure- oriented inter-

face to remote services. Each server supplies a program that is a set of pro-

cedures. NFS is one such "program". The combination of host address, program

number, and procedure number specifies one remote service procedure. RPC
does not depend on services provided by specific protocols, so it can be used with

any underlying transport protocol. See the Remote Procedure Calls: Protocol

Specification chapter of this manual.

External Data Representation The External Data Representation (XDR) standard provides a common way of

representing a set of data types over a network. The NFS Protocol Specification

is written using the RPC data description language. For more information, see

the External Data Representation Standard: Protocol Specification chapter of

this manual. Sun provides implementations ofXDR and RPC, but NFS does not

require their use. Any software that provides equivalent functionality can be

used, and if the encoding is exactly the same it can interoperate with other imple-

mentations of NFS.

microsystems
167 Revision A, of 27 March 1990

168 Chapter 7— Remote Procedure Calls: Protocol Specification

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 1 69

Stateless Servers

8.3. NFS Protocol

Definition

File System Model

The NFS protocol is stateless. That is, a server does not need to maintain any

extra state information about any of its clients in order to function correctly.

Stateless servers have a distinct advantage over stateful servers in the event of a

failure. With stateless servers, a client need only retry a request until the server

responds; it does not even need to know that the server has crashed, or the net-

work temporarily went down. The client of a stateful server, on the other hand,

needs to either detect a server crash and rebuild the server’s state when it comes

back up, or cause client operations to fail.

This may not sound like an important issue, but it affects the protocol in some
unexpected ways. We feel that it is worth a bit of extra complexity in the proto-

col to be able to write very simple servers that do not require fancy crash

recovery.

On the other hand, NFS deals with objects such as files and directories that

inherently have state — what good would a file be if it did not keep its contents

intact? The goal is to not introduce any extra state in the protocol itself. Another

way to simplify recovery is by making operations "idempotent" whenever possi-

ble (so that they can potentially be repeated).

Servers have been known to change over time, and so can the protocol that they

use. So RPC provides a version number with each RPC request. This RFC
describes version two of the NFS protocol. Even in the second version, there are

various obsolete procedures and parameters, which will be removed in later ver-

sions. An RFC for version three of the NFS protocol is currently under prepara-

tion.

NFS assumes a file system that is hierarchical, with directories as all but the

bottom-level files. Each entry in a directory (file, directory, device, etc.) has a

string name. Different operating systems may have restrictions on the depth of

the tree or the names used, as well as using different syntax to represent the

"pathname", which is the concatenation of all the "components" (directory and

file names) in the name. A "file system" is a tree on a single server (usually a

single disk or physical partition) with a specified "root". Some operating systems

provide a "mount" operation to make all file systems appear as a single tree,

while others maintain a "forest" of file systems. Files are unstructured streams of

uninterpreted bytes. Version 3 of NFS uses a slightly more general file system

model.

NFS looks up one component of a pathname at a time. It may not be obvious

why it does not just take the whole pathname, traipse down the directories, and

return a file handle when it is done. There are several good reasons not to do

this. First, pathnames need separators between the directory components, and

different operating systems use different separators. We could define a Network

Standard Pathname Representation, but then every pathname would have to be

parsed and converted at each end. Other issues are discussed in NFS Implemen-

tation Issues below.

Although files and directories are similar objects in many ways, different pro-

cedures are used to read directories and files. This provides a network standard

format for representing directories. The same argument as above could have

Revision A, of 27 March 1990

170 Protocol Specifications

RPC Information

Sizes ofXDR Structures

Basic Data Types

been used to justify a procedure that returns only one directory entiy per call.

The problem is efficiency. Directories can contain many entries, and a remote

call to return each would be just too slow.

Authentication

The NFS service uses AUTH_UNIX, AUTH_DES, or AUTH_SHORT style

authentication, except in the NULL procedure where AUTH_NONE is also

allowed.

Transport Protocols

NFS currently is supported on UDP/IP only.

Port Number

The NFS protocol currently uses the UDP port number 2049. This is not an

officially assigned port, so later versions of the protocol use the “Portmap-

ping” facility of RPC.

These are the sizes, given in decimal bytes, of various XDR structures used in the

protocol:

/ * The maximum number ofbytes ofdata in a READ or WRITE request * /

const MAXDATA = 8192;

/ * The maximum number ofbytes in a pathname argument * /

const MAXPATHLEN = 1024;

/ * The maximum number ofbytes in a file name argument * /

const MAXNAMLEN = 255;

/ * The size in bytes of the opaque "cookie " passed by READDIR * /

const COOKIESIZE = 4;

/ * The size in bytes of the opaque file handle * /

const FHSIZE = 32;

The following XDR definitions are basic structures and types used in other struc-

tures described further on.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 171

stat enum stat {

NFS_OK = 0,

NFSERR_PERM=1,
NFSERR_NOENT=2 ,

NFSERR_IO=5,
NFSERR_NXIO=6,
NFSERR_ACCES=13,
NFSERR_EXIST=17,
NFSERR_NODEV=l 9 ,

NFSERR_NOTDIR=20,
NFSERR_ISDIR=21,
NFSERR_FBIG=27,
NFSERR_NOSPC=2 8

,

NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69 f

NFSERR_STALE=7 0 ,

NFSERR WFLUSH=99

The stat () type is returned with every procedure’s results. A value of

NFS_OK indicates that the call completed successfully and the results are valid.

The other values indicate some kind of error occurred on the server side during

the servicing of the procedure. The error values are derived from UNIX error

numbers.

NFSERR_PERM:
Not owner. The caller does not have correct ownership to perform the

requested operation.

NFSERR_NOENT:
No such file or directory. The file or directory specified does not exist.

NFSERR_IO:
Some sort of hard error occurred when the operation was in progress. This

could be a disk error, for example.

NFSERR_NXIO:
No such device or address.

NFSERR_ACCES:
Permission denied. The caller does not have the correct permission to per-

form the requested operation.

NFSERR_EXIST:
File exists. The file specified already exists.

NFSERR_NODEV:
No such device.

NFSERR_NOTDIR:
Not a directory. The caller specified a non-directory in a directory operation.

#sun
Nr microsystems

Revision A, of 27 March 1990

NFSERR_ISDIR:
Is a directory. The caller specified a directory in a non- directory operation.

NFSERR_FBIG:
File too large. The operation caused a file to grow beyond the server’s limit.

NFSERR_NOSPC:
No space left on device. The operation caused the server’s filesystem to

reach its limit.

NFSERR_ROFS:
Read-only filesystem. Write attempted on a read-only filesystem.

NFSERR_NAMETOOLONG:
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY

:

Directory not empty. Attempted to remove a directory that was not empty.

NFSERR_DQUOT:
Disk quota exceeded. The client’s disk quota on the server has been

exceeded.

NFSERR_STALE

:

The "fhandle" given in the arguments was invalid. That is, the file referred

to by that file handle no longer exists, or access to it has been revoked.

NFSERRJWFLUSH:
The server’s write cache used in the writecache call got flushed to disk.

ftype enum ftype {

NFNON = 0,

NFREG = 1,

NFDIR = 2,

NFBLK = 3,

NFCHR = 4,

NFLNK = 5

}

;

The enumeration ftype gives the type of a file. The type NFNON indicates a

non-file, NFREG is a regular file, NFDIR is a directory, NFBLK is a block-special

device, NFCHR is a character-special device, and nflnk is a symbolic link.

fhandle typedef opaque fhandle [FHSIZE] ;

The fhandle is the file handle passed between the server and the client. All

file operations are done using file handles to refer to a file or directory. The file

handle can contain whatever information the server needs to distinguish an indi-

vidual file.

®sun
microsystems

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 173

timeval struct timeval {

unsigned int seconds;
unsigned int useconds;

1

;

The timeval structure is the number of seconds and microseconds since mid-

night January 1, 1970, Greenwich Mean Time. It is used to pass time and date

information.

fattr struct fattr
ftype
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
timeval
timeval
timeval

1 ;

The fattr structure contains the attributes of a file; "type" is the type of the

file; "nlink" is the number of hard links to the file (the number of different names

for the same file); "uid" is the user identification number of the owner of the file;

"gid" is the group identification number of the group of the file; "size" is the size

in bytes of the file; "blocksize" is the size in bytes of a block of the file; "rdev" is

the device number of the file if it is type NFCHR or NFBLK; "blocks" is the

number of blocks the file takes up on disk; "fsid" is the file system identifier for

the filesystem containing the file; "fileid" is a number that uniquely identifies the

file within its filesystem; "atime" is the time when the file was last accessed for

either read or write; "mtime" is the time when the file data was last modified

(written); and "ctime" is the time when the status of the file was last changed.

Writing to the file also changes "ctime" if the size of the file changes.

"mode" is the access mode encoded as a set of bits. Notice that the file type is

specified both in the mode bits and in the file type. This is really a bug in the

protocol and will be fixed in future versions. The descriptions given below

specify the bit positions using octal numbers.

{

int
type;
mode

;

int nlink;
int uid;

int gid;

int size;

int blocksize;
int rdev;

int blocks;
int fsid;

int fileid;
atime;
mtime;
ctime;

Revision A, of 27 March 1990

174 Protocol Specifications

Bit Description

0040000 This is a directory; "type" field should be NFDIR.

0020000 This is a character special file; "type" field should be NFCHR.
0060000 This is a block special file; "type" field should be NFBLK.
0100000 This is a regular file; "type" field should be NFREG.
0120000 This is a symbolic link file; "type" field should be NFLNK.
0140000 This is a named socket; "type" field should be NFNON.
0004000 Set user id on execution.

0002000 Set group id on execution.

0001000 Save swapped text even after use.

0000400 Read permission for owner.

0000200 Write permission for owner.

0000100 Execute and search permission for owner.

0000040 Read permission for group.

0000020 Write permission for group.

0000010 Execute and search permission for group.

0000004 Read permission for others.

0000002 Write permission for others.

0000001 Execute and search permission for others.

Notes:

The bits are the same as the mode bits returned by the stat (2) system call

in the UNIX system. The file type is specified both in the mode bits and in

the file type. This is fixed in future versions.

The "rdev" field in the attributes structure is an operating system specific

device specifier. It will be removed and generalized in the next revision of

the protocol.

sattr struct sattr {

unsigned int
unsigned int
unsigned int
unsigned int
timeval
timeval

mode ;

uid;

gid;

size;

atime;
mtime;

}

;

The sattr structure contains the file attributes which can be set from the client.

The fields are the same as for fattr above. A "size" of zero means the file

should be truncated. A value of -1 indicates a field that should be ignored.

filename typedef string filename<MAXNAMLEN>;

The type filename is used for passing file names orpathname components.

path typedef string path<MAXPATHLEN>;

The type path is a pathname. The server considers it as a string with no internal

structure, but to the client it is the name of a node in a filesystem tree.

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 175

attrstat

diropargs

diropres

Server Procedures

union attrstat switch (stat status) {

case NFS_OK:
fattr attributes;

default

:

void;

1 ;

The attrstat structure is a common procedure result. It contains a "status"

and, if the call succeeded, it also contains the attributes of the file on which the

operation was done.

struct diropargs {

fhandle dir;

filename name;

1 ;

The diropargs structure is used in directory operations. The "fhandle" "dir"

is the directory in which to find the file "name". A directory operation is one in

which the directory is affected.

union diropres switch (stat status) {

case NFS_OK

:

struct {

fhandle file;

fattr attributes;

) diropok;
default

:

void;

};

The results of a directory operation are returned in a diropres structure. If the

call succeeded, a new file handle "file" and the "attributes" associated with that

file are returned along with the "status".

The protocol definition is given as a set of procedures with arguments and results

defined using the RPC language. A brief description of the function of each pro-

cedure should provide enough information to allow implementation.

All of the procedures in the NFS protocol are assumed to be synchronous. When
a procedure returns to the client, the client can assume that the operation has

completed and any data associated with the request is now on stable storage. For

example, a client WRITE request may cause the server to update data blocks,

filesystem information blocks (such as indirect blocks), and file attribute infor-

mation (size and modify times). When the WRITE returns to the client, it can

assume that the write is safe, even in case of a server crash, and it can discard the

data written. This is a very important part of the statelessness of the server. If

the server waited to flush data from remote requests, the client would have to

save those requests so that it could resend them in case of a server crash.

Revision A, of 27 March 1990

176 Protocol Specifications

Do Nothing

Get File Attributes

Set File Attributes

/*

* Remote file service routines

*1

program NFS_PROGRAM {

version NFS_VERSION {

void NFSPROC_NULL (void) = 0;

attrstat NFSPROC_GETATTR (fhandle) = 1;

attrstat NFSPROC_SETATTR (sattrargs) = 2;

void NFSPROC_ROOT (void) = 3;

diropres NFSPROC_LOOKUP (diropargs) = 4;

readlinkres NFSPROC_READLINK (fhandle) = 5;

readres NFSPROC_READ (readargs) = 6;

void NFSPROC_WRITECACHE (void) = 7;

attrstat NFSPROC_WRITE (writeargs) = 8;

diropres NFSPROC_CREATE (createargs) = 9;

stat NFSPROC_REMOVE (diropargs) = 10;
stat NFSPROC_RENAME (renameargs) = 11;
stat NFSPROC_LINK (linkargs) = 12;

stat NFSPROC_SYMLINK (symlinkargs)
= 13;

diropres NFSPROC_MKDIR (createargs)
= 14;

stat NFSPROC_RMDIR (diropargs) = 15;
readdirres NFSPROC_READDIR (readdirargs) = 16;
statfsres NFSPROC_STATFS (fhandle) = 17;

}
= 2 ;

}
= 100003;

void
NFSPROC_NULL (void) = 0;

This procedure does no work. It is made available in all RPC services to allow

server response testing and timing.

attrstat
NFSPROC_GETATTR (fhandle) = 1;

If the reply status is NFS_OK, then the reply attributes contains the attributes for

the file given by the input fhandle.

struct sattrargs {

fhandle file;
sattr attributes;

} ;

attrstat
NFSPROC_SETATTR (sattrargs) = 2;

The "attributes" argument contains fields which are either -1 or are the new value

for the attributes of "file". If the reply status is NFS_OK, then the reply attributes

have the attributes of the file after the "SETATTR" operation has completed.

Note: The use of -1 to indicate an unused field in "attributes" is changed in the

next version of the protocol.

&sun
Xr microsystems

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 177

Get Filesystem Root

Look Up File Name

Read From Symbolic Link

Read From File

void
NFSPROC_ROOT (void) = 3;

Obsolete. This procedure is no longer used because finding the root file handle

of a filesystem requires moving pathnames between client and server. To do this

right we would have to define a network standard representation of pathnames.

Instead, the function of looking up the root file handle is done by the

MNTPROC_MNT ()
procedure. (See the Mount Protocol Definition below for

details).

diropres
NFSPROC_LOOKUP (diropargs) = 4;

If the reply "status" is NFS_OK, then the reply "file" and reply "attributes" are the

file handle and attributes for the file "name" in the directory given by "dir" in the

argument.

union readlinkres switch (stat status) {

case NFS_OK

:

path data;
default

:

void;

1 ;

readlinkres
NFSPROC_READLINK(fhandle) = 5;

If "status" has the value NFS_OK, then the reply "data" is the data in the sym-

bolic link given by the file referred to by the fhandle argument.

Note: since NFS always parses pathnames on the client, the pathname in a sym-

bolic link may mean something different (or be meaningless) on a different client

or on the server if a different pathname syntax is used.

struct readargs {

fhandle file;

unsigned offset;
unsigned count;
unsigned totalcount;

}

;

union readres switch (stat status) {

case NFS_OK:
fattr attributes;
opaque data<NFS_MAXDATA>

;

default

:

void;

)

;

readres
NFSPROC_READ (readargs) = 6;

Returns up to "count" bytes of "data" from the file given by "file", starting at

SUH Revision A, of 27 March 1990
microsystems

178 Protocol Specifications

Write to Cache

Write to File

Create File

Remove File

"offset" bytes from the beginning of the file. The first byte of the file is at offset

zero. The file attributes after the read takes place are returned in "attributes".

Note: The argument "totalcount" is unused, and is removed in the next protocol

revision.

void
NFSPROC_WRITECACHE (void) = 7;

To be used in the next protocol revision.

struct writeargs {

fhandle file;
unsigned beginoffset;
unsigned offset;
unsigned totalcount;
opaque data<NFS_MAXDATA>;

} ;

attrstat
NFSPROC_WRITE (writeargs) = 8;

Writes "data" beginning "offset" bytes from the beginning of "file". The first

byte of the file is at offset zero. If the reply "status" is NFS_OK, then the reply

"attributes" contains the attributes of the file after the write has completed. The
write operation is atomic. Data from this call to WRITE will not be mixed with

data from another client’s calls.

Note: The arguments "beginoffset" and "totalcount" are ignored and are removed
in the next protocol revision.

struct createargs {

diropargs where;
sattr attributes;

}

;

diropres
NFSPROC_CREATE (createargs) = 9;

The file "name" is created in the directory given by "dir". The initial attributes of

the new file are given by "attributes". A reply "status" of NFS_OK indicates that

the file was created, and reply "file" and reply "attributes" are its file handle and

attributes. Any other reply "status" means that the operation failed and no file

was created.

Note: This routine should pass an exclusive create flag, meaning "create the file

only if it is not already there".

stat
NFSPROC_REMOVE (diropargs) = 10;

The file "name" is removed from the directory given by "dir". A reply of

NFS_OK means the directory entry was removed.

sue
microsystems

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 179

Rename File

Create Link to File

Create Symbolic Link

Note: possibly non-idempotent operation.

struct renameargs {

diropargs from;

diropargs to;

}

;

stat
NFSPROC_RENAME (renameargs) = 11;

The existing file "from.name" in the directory given by "from.dir" is renamed to

"to.name" in the directory given by "to.dir". If the reply is NFS_OK, the file was

renamed. The RENAME operation is atomic on the server; it cannot be inter-

rupted in the middle.

Note: possibly non-idempotent operation.

struct linkargs {

fhandle from;

diropargs to;

}

;

stat
NFSPROC_LINK (linkargs) = 12;

Creates the file "to.name" in the directory given by "to.dir", which is a hard link

to the existing file given by "from". If the return value is NFS_OK, a link was

created. Any other return value indicates an error, and the link was not created.

A hard link should have the property that changes to either of the linked files are

reflected in both files. When a hard link is made to a file, the attributes for the

file should have a value for "nlink" that is one greater than the value before the

link.

Note: possibly non-idempotent operation.

struct symlinkargs {

diropargs from;

path to;

sattr attributes;

}

;

stat
NFSPROC_SYMLINK (symlinkargs) = 13;

Creates the file "from.name" with ftype NFLNK in the directory given by

"from.dir". The new file contains the pathname "to" and has initial attributes

given by "attributes". If the return value is NFS_OK, a link was created. Any
other return value indicates an error, and the link was not created.

A symbolic link is a pointer to another file. The name given in "to" is not inter-

preted by the server, only stored in the newly created file. When the client refer-

ences a file that is a symbolic link, the contents of the symbolic link are normally

transparently reinterpreted as a pathname to substitute. A READLINK operation

©sun
Xr microsystems

Revision A, of 27 March 1990

1 80 Protocol Specifications

Create Directory

Remove Directory

Read From Directory

returns the data to the client for interpretation.

Note: On UNIX servers the attributes are never used, since symbolic links always
have mode 0777.

diropres
NF SPROC_MKD IR (createargs) = 14;

The new directory "where.name" is created in the directory given by "where.dir".

The initial attributes of the new directory are given by "attributes". A reply

"status" ofNFS_OK indicates that the new directory was created, and reply "file"

and reply "attributes" are its file handle and attributes. Any other reply "status"

means that the operation failed and no directory was created.

Note: possibly non-idempotent operation,

stat
NFSPROC_RMDIR (diropargs) = 15;

The existing empty directory "name" in the directory given by "dir" is removed.
If the reply is NFS_OK, the directory was removed.

Note: possibly non-idempotent operation.

struct readdirargs {

fhandle dir;
nfscookie cookie;
unsigned count;

} ;

struct entry {

unsigned fileid;
filename name;
nfscookie cookie;
entry *nextentry;

}

;

union readdirres switch (stat status) {

case NFS_OK:
struct {

entry *entries;
bool eof;

} readdirok;
default

:

void;

} ;

readdirres
NFSPROC_READDIR (readdirargs) = 16;

Returns a variable number of directory entries, with a total size of up to "count"

bytes, from the directory given by "dir". If the returned value of "status" is

NFS_OK, then it is followed by a variable number of "entry"s. Each "entry" con-
tains a "fileid" which consists of a unique number to identify the file within a

AsunW microsystems
Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 1 8

1

Get Filesystem Attributes

8.4. NFS Implementation
Issues

filesystem, the "name" of the file, and a "cookie" which is an opaque pointer to

the next entry in the directory. The cookie is used in the next READDIR call to

get more entries starting at a given point in the directory. The special cookie

zero (all bits zero) can be used to get the entries starting at the beginning of the

directory. The "fileid" field should be the same number as the "fileid" in the attri-

butes of the file. (See the Basic Data Types section.) The "eof’ flag has a value

of TRUE if there are no more entries in die directory.

union statfsres (stat status)

case NFS_OK

:

struct {

unsigned tsize;
unsigned bsize;
unsigned blocks;
unsigned bfree;
unsigned bavail;

} info;

default

:

void;

}

;

statfsres
NFSPROC_STATFS (fhandle) = 17;

If the reply "status" is NFS_OK, then the reply "info" gives the attributes for the

filesystem that contains file referred to by the input fhandle. The attribute fields

contain the following values:

tsize:

The optimum transfer size of the server in bytes. This is the number of bytes

the server would like to have in the data part ofREAD and WRITE requests.

bsize:

The block size in bytes of the filesystem,

blocks:

The total number of "bsize" blocks on the filesystem,

bfree:

The number of free "bsize" blocks on the filesystem,

bavail:

The number of "bsize" blocks available to non-privileged users.

Note: This call does not work well if a filesystem has variable size blocks.

The NFS protocol is designed to be operating system independent, but since this

version was designed in a UNIX environment, many operations have semantics

similar to the operations of the UNIX file system. This section discusses some of

the implementation-specific semantic issues.

©sun
NT microsystems

Revision A, of 27 March 1990

1 82 Protocol Specifications

Server/Client Relationship The NFS protocol is designed to allow servers to be as simple and general as pos-
sible. Sometimes the simplicity of the server can be a problem, if the client

wants to implement complicated filesystem semantics.

For example, some operating systems allow removal of open files. A process can
open a file and, while it is open, remove it from the directory. The file can be
read and written as long as the process keeps it open, even though the file has no
name in the filesystem. It is impossible for a stateless server to implement these

semantics. The client can do some tricks such as renaming the file on remove,
and only removing it on close. We believe that the server provides enough func-

tionality to implement most file system semantics on the client.

Every NFS client can also potentially be a server, and remote and local mounted
filesystems can be freely intermixed. This leads to some interesting problems
when a client travels down the directory tree of a remote filesystem and reaches
the mount point on the server for another remote filesystem. Allowing the server

to follow the second remote mount would require loop detection, server lookup,
and user revalidation. Instead, we decided not to let clients cross a server’s

mount point. When a client does a LOOKUP on a directory on which the server
has mounted a filesystem, the client sees the underlying directory instead of the

mounted directory. A client can do remote mounts that match the server’s mount
points to maintain the server’s view.

Pathname Interpretation There are a few complications to the rule that pathnames are always parsed on
the client. For example, symbolic links could have different interpretations on
different clients. Another common problem for non-UNIX implementations is

the special interpretation of the pathname to mean the parent of a given direc-

toiy. The next revision of the protocol uses an explicit flag to indicate the parent
instead.

Permission Issues The NFS protocol, strictly speaking, does not define the permission checking
used by servers. However, it is expected that a server will do normal operating

system permission checking using AUTH_UNIX style authentication as the basis

of its protection mechanism. The server gets the client’s effective "uid", effec-

tive "gid", and groups on each call and uses them to check permission. There are

various problems with this method that can been resolved in interesting ways.

Using "uid" and "gid" implies that the client and server share the same "uid" list.

Every server and client pair must have the same mapping from user to "uid" and
from group to "gid". Since every client can also be a server, this tends to imply
that the whole network shares the same "uid/gid" space. auth_des (and the

next revision of the NFS protocol) uses string names instead of numbers, but
there are still complex problems to be solved.

Another problem arises due to the usually stateful open operation. Most operat-

ing systems check permission at open time, and then check that the file is open
on each read and write request. With stateless servers, the server has no idea that

the file is open and must do permission checking on each read and write call. On
a local filesystem, a user can open a file and then change the permissions so that

no one is allowed to touch it, but will still be able to write to the file because it is

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 1 83

Setting RPC Parameters

8.5. Mount Protocol

Definition

Introduction

open. On a remote filesystem, by contrast, the write would fail. To get around

this problem, the server’s permission checking algorithm should allow the owner

of a file to access it regardless of the permission setting.

A similar problem has to do with paging in from a file over the network. The

operating system usually checks for execute permission before opening a file for

demand paging, and then reads blocks from the open file. The file may not have

read permission, but after it is opened it doesn’t matter. An NFS server can not

tell the difference between a normal file read and a demand page-in read. To

make this work, the server allows reading of files if the "uid" given in the call has

execute or read permission on the file.

In most operating systems, a particular user (on the user ID zero) has access to all

files no matter what permission and ownership they have. This "super-user" per-

mission may not be allowed on the server, since anyone who can become super-

user on their workstation could gain access to all remote files. The UNIX server

by default maps user id 0 to -2 before doing its access checking. This works

except for NFS root filesystems, where super-user access cannot be avoided.

Various file system parameters and options should be set at mount time. The

mount protocol is described in the appendix below. For example, "Soft" mounts

as well as "Hard" mounts are usually both provided. Soft mounted file systems

return errors when RPC operations fail (after a given number of optional

retransmissions), while hard mounted file systems continue to retransmit forever.

Clients and servers may need to keep caches of recent operations to help avoid

problems with non-idempotent operations.

The mount protocol is separate from, but related to, the NFS protocol. It pro-

vides operating system specific services to get the NFS off the ground'— looking

up server path names, validating user identity, and checking access permissions.

Clients use the mount protocol to get the first file handle, which allows them

entry into a remote filesystem.

The mount protocol is kept separate from the NFS protocol to make it easy to

plug in new access checking and validation methods without changing the NFS
server protocol.

Notice that the protocol definition implies stateful servers because the server

maintains a list of client’s mount requests. The mount list infoimation is not crit-

ical for the correct functioning of either the client or the server. It is intended for

advisory use only, for example, to warn possible clients when a server is going

down.

Version one of the mount protocol is used with version two of the NFS protocol.

The only connecting point is the fhandle structure, which is the same for both

protocols.

Revision A, of 27 March 1990

1 84 Protocol Specifications

RPC Information

Sizes of XDR Structures

Basic Data Types

fhandle

fhstatus

dirpath

Authentication

The mount service uses AUTH_UNIX and AUTH_DES style authentication

only.

Transport Protocols

The mount service is currently supported on UDP/IP only.

Port Number
Consult the server’s portmapper, described in the Remote Procedure Calls:

Protocol Specification, to find the port number on which the mount service

is registered.

These are the sizes, given in decimal bytes, of various XDR structures used in the

protocol:

/ * The maximum number ofbytes in a pathname argument * /

const MNTPATHLEN = 1024;

/ * The maximum number ofbytes in a name argument * /

const MNTNAMLEN = 255;

/ * The size in bytes of the opaque file handle * /

const FHSIZE = 32;

This section presents the data types used by the mount protocol. In many cases

they are similar to the types used in NFS.

typedef opaque fhandle [FHSIZE]

;

The type fhandle is the file handle that the server passes to the client. All file

operations are done using file handles to refer to a file or directory. The file han-

dle can contain whatever information the server needs to distinguish an indivi-

dual file.

This is the same as the "fhandle" XDR definition in version 2 of the NFS proto-

col; see Basic Data Types in the definition of the NFS protocol, above.

union fhstatus switch (unsigned status) {

case 0:

fhandle directory;
default

:

void;

} ;

The type fhstatus is a union. If a "status" of zero is returned, the call com-
pleted successfully, and a file handle for the "directory" follows. A non-zero
status indicates some sort of error. In this case the status is a UNIX error

number.

typedef string di rpath<MNTPATHLEN>

;

The type dirpath is a server pathname of a directory.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 8— Network File System: Version 2 Protocol Specification 1 85

name

Server Procedures

Do Nothing

Add Mount Entry

Return Mount Entries

typedef string name<MNTNAMLEN>;

The type name is an arbitrary string used for various names.

The following sections define the RPC procedures supplied by a mount server.

/*

* Protocol descriptionfor the mount program

*/

program MOUNTPROG {

/*

* Version 1 of the mount protocol used with

* version 2 ofthe NFS protocol.

*/

version MOUNTVERS {

void MOUNTPROC_NULL (void) = 0;

fhstatus MOUNTPROC_MNT (dirpath) = 1;

mountlist MOUNTPROC_DUMP (void) = 2;

void MOUNTPROC_UMNT (dirpath) = 3;

void MOUNTPROC_UMNTALL (void) = 4;

exportlist MOUNTPROC_EXPORT (void) = 5;

}
= l;

}
= 100005;

void
MNTPROC_NULL (void) = 0;

This procedure does no work. It is made available in all RPC services to allow

server response testing and timing.

fhstatus
MNTPROC_MNT (dirpath) = 1;

If the reply "status" is 0, then the reply "directory" contains the file handle for the

directory "dimame". This file handle may be used in the NFS protocol. This

procedure also adds a new entry to the mount list for this client mounting "dir-

name".

struct *mountlist {

name hostname;
dirpath directory;
mountlist nextentry;

} ;

mountlist
MNTPROC_DUMP (void) = 2;

Returns the list of remote mounted filesystems. The "mountlist" contains one

entry for each "hostname" and "directory" pair.

Revision A, of 27 March 1990

186 Protocol Specifications

Remove Mount Entry void
MNTPROC_UMNT (dirpath) = 3;

Removes the mount list entry for the input "dirpath".

Remove All Mount Entries void
MNTPROCJJMNTALL (void) = 4;

Removes all of the mount list entries for this client.

Return Export List struct *groups {

name grname;
groups grnext;

in-

struct *exportlist {

dirpath filesys;
groups groups;
exportlist next;

} ;

exportlist
MNTPROC_EXPORT (void) = 5;

Returns a variable number of export list entries. Each entry contains a filesystem

name and a list of groups that are allowed to import it. The filesystem name is in

"filesys", and the group name is in the list "groups".

Note: The exportlist should contain more information about the status of the

filesystem, such as a read-only flag.

^sun
microsystems

Revision A, of 27 March 1990

PART THREE: Transport-Level

Programming

9

Transport Level Interface Programming

This chapter provides detailed information, with various examples, on the UNIX
system Transport Interface. This interface is intended to supercede the socket-

based interprocess communications mechanisms as the standard means of gain-

ing direct access to transport services. Network application developers who do

not require such direct access should instead work within the Remote Procedure

Call (RPC) framework— which is documented in PART I of this manual.

NOTE SunOS 4.1 does not support RPC on TLI. This is afeature that will appear in

future products.

The following discussion assumes a working knowledge ofUNIX system pro-

gramming and data communication concepts. Familiarity with the Reference

Model of Open Systems Interconnection (OSI) is required as well.

9.1. Background To place the Transport Interface in perspective, a discussion of the OSI Refer-

ence Model is first presented. The Reference Model partitions networking func-

tions into seven layers, as depicted in Figure 9-1.

Figure 9-1 OSI Reference Model

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

application

presentation

session

transport

network

data link

physical

Layer 1

The physical layer is responsible for the transmission of raw data over a

communication medium.

f#sun
microsystems

189 Revision A, of 27 March 1990

190 Transport-Level Programming

Layer 2

The data link layer provides the exchange of data between network layer

entities. It detects and corrects any errors that may occur in the physical

layer transmission.

Layer 3

The network layer manages the operation of the network. In particular, it is

responsible for the routing and management of data exchange between tran-

sport layer entities within the network.

Layer 4

The transport layer provides transparent data transfer services between ses-

sion layer entities by relieving them from concerns of how reliable and

cost-effective transfer of data is achieved.

Layer 5

The session layer provides the services needed by presentation layer entities

that enable them to organize and synchronize their dialogue and manage
their data exchange.

Layer 6

The presentation layer manages the representation of information that appli-

cation layer entities either communicate or reference in their communica-

tion.

Layer 7

The application layer serves as the window between corresponding applica-

tion processes that are exchanging information.

A basic principle of the Reference Model is that each layer provides services

needed by the next higher layer in a way that frees the upper layer from concern

about how these services are provided. This approach simplifies the design of

each particular layer.

Industry standards either have been or are being defined at each layer of the

Reference Model. Two standards are defined at each layer: one that specifies an

interface to the services of the layer, and one that defines the protocol by which
services are provided. A service interface standard at any layer frees users of the

service from details of how that layer’s protocol is implemented, or even which

protocol is used to provide the service.

The transport layer is important because it is the lowest layer in the Reference

Model that provides the basic service of reliable, end-to-end data transfer needed

by applications and higher layer protocols. In doing so, this layer hides the

topology and characteristics of the underlying network from its users. More
important, however, the transport layer defines a set of services common to

layers of many contemporary protocol suites, including the International Stan-

dards Organization (ISO) protocols, the Transmission Control Protocol and Inter-

net Protocol (TCP/IP) of the ARPANET, Xerox Network Systems (XNS), and

the Systems Network Architecture (SNA).

A transport service interface, then, enables applications and higher layer proto-

cols to be implemented without knowledge of the underlying protocol suite.

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 191

9.2. Document
Organization

That is a principle goal of the UNIX system Transport Interface. Also, because

an inherent characteristic of the transport layer is that it hides details of the physi-

cal medium being used, the Transport Interface offers both protocol and medium

independence to networking applications and higher layer protocols.

The UNIX system Transport Interface was modeled after the industry standard

ISO Transport Service Definition (ISO 8072). As such, it is intended for those

applications and protocols that require transport services. Because the Transport

Interface provides reliable data transfer, and because its services are common to

several protocol suites, many networking applications will find these services

useful.

The Transport Interface is implemented as a user library using the STREAMS
input/output mechanism. Therefore, many services available to STREAMS
applications are also available to users of the Transport Interface. These services

will be highlighted throughout this guide. For detailed information about

STREAMS, see the STREAMS Programming manual.

This section is organized as follows:

Overview of the Transport Interface, a summary of the basic services

available to Transport Interface users and a presentation of the background

information needed for the remainder of the section.

Introduction to Connection-Mode Service, a description of the services

associated with connection-based (or virtual circuit) communication.

Introduction to Connectionless-Mode Service, a description of the ser-

vices associated with connectionless (or datagram) communication.

A Read/Write Interface, a description of how users can use the services of

read(2) and write(2) to communicate over a transport connection.

Advanced Topics, a discussion of important concepts not covered in earlier

sections. These include asynchronous event handling and processing of

multiple, simultaneous connect requests.

State Transitions, an appendix which defines the allowable state transitions

associated with the Transport Interface.

Guidelines for Protocol Independence, an appendix which establishes

necessary guidelines for developing software that can be run without change

over any transport protocol developed for the Transport Interface.

Examples, an appendix that presents the full listing of each programming

example used throughout the guide.

Glossary, a definition of the Transport Interface terms and acronyms used in

this section.

This section describes the more important and common facilities of the Transport

Interface, but is not meant to be exhaustive. Section 3N of the SunOS Reference

Manual contains a complete description of each Transport Interface routine.

Revision A, of 27 March 1990

192 Transport-Level Programming

9.3. Overview of the This section presents a high level overview of the services of the Transport Inter-

Transport Interface face, which supports the transfer of data between two user processes. Figure 9-2

illustrates the Transport Interface.

Figure 9-2 Transport Interface

serv

requ

transport

user

i

ice

ests

i

servic

and ir

/

[

:e events

idications

transport

provider

Transport Interface

The transport provider is the entity that provides the services of the Transport

Interface, and the transport user is the entity that requires these services. An
example of a transport provider is the ISO transport protocol, while a transport

user may be a networking application or session layer protocol.

The transport user accesses the services of the transport provider by issuing the

appropriate service requests. One example is a request to transfer data over a

connection. Similarly, the transport provider notifies the user of various events,

such as the arrival of data on a connection.

The Network Services Library of UNIX System V includes a set of functions that

support the services of the Transport Interface for user processes [see

intro(3)]. These functions enable a user to initiate requests to the provider and

process incoming events. Programs using the Transport Interface can link the

appropriate routines as follows:

cc prog.c -lnsl_s

v J

Modes of Service Two modes of service, connection-mode and connectionless-mode, are provided

by the Transport Interface. Connection-mode is circuit-oriented and enables data

to be transmitted over an established connection in a reliable, sequenced manner.

It also provides an identification mechanism that avoids the overhead of address

resolution and transmission during the data transfer phase. This service is attrac-

tive for applications that require relatively long-lived, datastream-oriented

interactions.

Connectionless-mode, in contrast, is message-oriented and supports data transfer

in self-contained units with no logical relationship required among multiple

#sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 193

units. This service requires only a preexisting association between the peer users

involved, which determines the characteristics of the data to be transmitted. All

the information required to deliver a unit of data (for example, the destination

address) is presented to the transport provider, together with the data to be

transmitted, in one service access (which need not relate to any other service

access). Each unit of data transmitted is entirely self-contained.

Connectionless-mode service is attractive for applications that:

involve short-term request/response interactions

exhibit a high level of redundancy

are dynamically reconfigurable

do not require guaranteed, in-sequence delivery of data

Connection-Mode Service The connection-mode transport service is characterized by four phases: local

management, connection establishment, data transfer, and connection release.

Local Management The local management phase defines local operations between a transport user

and a transport provider. For example, a user must establish a channel of com-

munication with the transport provider, as illustrated in Figure 9-3. Each channel

between a transport user and transport provider is a unique endpoint of communi-

cation, and will be called the transport endpoint. The t_open(3N) routine

enables a user to choose a particular transport provider that will supply the

connection-mode services, and establishes the transport endpoint.

Figure 9-3 Channel Between User and Provider

Another necessary local function for each user is to establish an identity with the

transport provider. Each user is identified by a transport address. More accu-

rately, a transport address is associated with each transport endpoint, and one

user process may manage several transport endpoints. In connection-mode ser-

vice, one user requests a connection to another user by specifying that user’s

address. The structure of a transport address is defined by the address space of

the transport provider. An address may be as simple as a random character string

(for example, "file_server"), or as complex as an encoded bit pattern that

specifies all information needed to route data through a network. Each transport

wsun
microsystems

Revision A, of 27 March 1990

194 Transport-Level Programming

provider defines its own mechanism for identifying users. Addresses may be

assigned to each transport endpoint by t_bind(3N).

Table 9-1 Local Management Routines

Command Description

t_alloc Allocates Transport Interface data structures.

t_bind Binds a transport address to a transport endpoint.

t_close Closes a transport endpoint.

t_error Prints a Transport Interface error message.

t_ffee Frees structures allocated using t_a11 oc

.

t_getinfo Returns a set of parameters associated with a particular

transport provider.

t_getstate Returns the state of a transport endpoint.

t_look Returns the current event on a transport endpoint.

t_open Establishes a transport endpoint connected to a chosen

transport provider.

t_optmgmt Negotiates protocol-specific options with the transport

provider.

t_sync Synchronizes a transport endpoint with the transport pro-

vider.

t_unbind Unbinds a transport address from a transport endpoint.

In addition to t_open and t_bind, several routines are available to support

local operations. Table 9-1 summarizes all local management routines of the

Transport Interface.

Connection Establishment The connection establishment phase enables two users to create a connection, or

virtual circuit, between them, as demonstrated in Figure 9-4.

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 195

Figure 9-4 Transport Connection

This phase is illustrated by a client-server relationship between two transport

users. One user, the server, typically advertises some service to a group of users,

and then listens for requests from those users. As each client requires the service,

it attempts to connect itself to the server using the server’s advertised transport

address. The t_connect(3N) routine initiates the connect request. One argu-

ment to t_connect , the transport address, identifies the server the client

wishes to access. The server is notified of each incoming request using

t_listen(3N), and may call t_accept(3N) to accept the client’s request for

access to the service. If the request is accepted, the transport connection is esta-

blished.

Table 9-2 summarizes all routines available for establishing a transport connec-

tion.

Table 9-2 Connection Establishment Routines

Command Description

t_accept Accepts a request for a transport connection.

t_connect Establishes a connection with the transport user at a

specified destination.

t_listen Retrieves an indication of a connect request from

another transport user.

t_rcvconnect Completes connection establishment if t_connect
was called in asynchronous mode (see the Advanced

Topics section).

Revision A, of 27 March 1990

196 Transport-Level Programming

Data Transfer

Connection Release

The data transfer phase enables users to transfer data in both directions over an

established connection. Two routines, t_snd(3N) and t_rcv(3N), send and

receive data over this connection. All data sent by a user is guaranteed to be

delivered to the user on the other end of the connection in the order in which it

was sent. Table 9-3 summarizes the connection mode data transfer routines.

Table 9-3 Connection Mode Data Transfer Routines

Command Description

t_rcv Retrieves data that has arrived over a transport connec-

tion.

t_snd Send data over an established transport connection.

The connection release phase provides a mechanism for breaking an established

connection. When you decide that the conversation should terminate, you can

request that the provider release the transport connection. Two types of connec-

tion release are supported by the Transport Interface. The first is an abortive

release, which directs the transport provider to release the connection immedi-

ately. Any previously sent data that has not yet reached the other transport user

may be discarded by the transport provider. The t_snddis(3N) routine ini-

tiates this abortive disconnect, and t_rcvdis(3N) processes the incoming

indication of an abortive disconnect.

All transport providers must support the abortive release procedure. In addition,

some transport providers may also support an orderly release facility that enables

users to terminate communication gracefully with no data loss. The functions

t_sndrel(3N) and t_rcvrel(3N) support this capability. Table 9-4 sum-

marizes the connection release routines.

Table 9-4 Connection Release Routines

Command Description

t_rcvdis Returns an indication of an aborted connection, includ-

ing a reason code and user data.

t_rcvrel Returns an indication that the remote user has requested

an orderly release of a connection.

t_snddis Aborts a connection or rejects a connect request.

t_sndrel Requests the orderly release of a connection.

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 197

Connectionless-Mode Service The connectionless-mode transport service is characterized by two phases: local

management and data transfer. The local management phase defines the same

local operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes called

datagrams) to the specified peer user. Each data unit must be accompanied by
the transport address of the destination user. Two routines, t_sndudata(3N)
and t_rcvudata(3N) support this message-based data transfer facility. Table

9-5 summarizes all routines associated with connectionless-mode data transfer.

State Transitions The Transport Interface has two components:

the library routines that provide the transport services to users

the state transition rules that define the sequence in which the transport rou-

tines may be invoked

The state transition rules can be found in the State Transitions section of this

chapter in the form of state tables. The state tables define the legal sequence of

library calls based on state information and the handling of events. These events

include user-generated library calls, as well as provider-generated event indica-

tions.

NOTE Any user ofthe Transport Interface must completely understand all possible state

transitions before writing software using the interface.

This section describes the connection-mode service of the Transport Interface.

As discussed in the previous section, the connection-mode service can be illus-

trated using a client-server paradigm. The important concepts of connection-

mode service will be presented using two programming examples. The examples

are related in that the first illustrates how a client establishes a connection to a

server and then communicates with the server. The second example shows the

server’s side of the interaction. All examples discussed in this guide are

presented in their entirety in the Some Examples section, below.

In the examples, the client establishes a connection with a server process. The
server then transfers a file to the client. The client, in turn, receives the data from

the server and writes it to its standard output file.

9.4. Introduction to

Connection-Mode
Services

Revision A, of 27 March 1990

198 Transport-Level Programming

Local Management Before the client and server can establish a transport connection, each must first

establish a local channel (the transport endpoint) to the transport provider using

t_open, and establish its identity (or address) using t_bind.

The set of services supported by the Transport Interface may not be implemented

by all transport protocols. Each transport provider has a set of characteristics

associated with it that determine the services it offers and the limits associated

with those services. This information is returned to the user by t_open, and

consists of the following:

addr

maximum size of a transport address

options

maximum bytes of protocol-specific options that may be passed between the

transport user and transport provider

tsdu

maximum message size that may be transmitted in either connection-mode

or connectionless-mode

etsdu

maximum expedited data message size that may be sent over a transport

connection

connect

maximum number of bytes of user data that may be passed between users

during connection establishment

discon

maximum bytes of user data that may be passed between users during the

abortive release of a connection

servtype

the type of service supported by the transport provider

The three service types defined by the Transport Interface are:

T_COTS
The transport provider supports connection-mode service but does not pro-

vide the optional orderly release facility.

T_COTS_ORD
The transport provider supports connection-mode service with the optional

orderly release facility.

T_CLTS
The transport provider supports connectionless-mode service. Only one

such service can be associated with the transport provider identified by

t_open.

NOTE t_open returns the default provider characteristics associated with a transport

endpoint. However, some characteristics may change after an endpoint has been

opened. This will occur if the characteristics are associated with negotiated

options (option negotiation is described later in this section). For example, if the

Asun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 199

support of expedited data transfer is a negotiated option, the value of this charac-

teristic may change. t_getinfo may be called to retrieve the current charac-

teristics of a transport endpoint.

Once a user establishes a transport endpoint with the chosen transport provider, it

must establish its identity. As mentioned earlier, t_bind accomplishes this by

binding a transport address to the transport endpoint. In addition, for servers, this

routine informs the transport provider that the endpoint will be used to listen for

incoming connect requests, also called connect indications.

An optional facility, t_optmgmt(3N), is also available during the local

management phase. It enables a user to negotiate the values of protocol options

with the transport provider. Each transport protocol is expected to define its own
set of negotiable protocol options, which may include such information as

Quality-of-Service parameters. Because of the protocol-specific nature of

options, only applications written for a particular protocol environment are

expected to use this facility.

The Client The local management requirements of the example client and server are used to

discuss details of these facilities. The following are the definitions needed by the

client program, followed by its necessary local management steps.

f

include <stdio.h>
include <tiuser.h>
include <fcntl.h>

define SRV_ADDR 1 /* server’s well known address * /

main ()

1

int fd;

int nbytes;
int flags = 0;

char buf [1024]

;

struct t_call *sndcall;
extern int t_errno;

if ((fd = t_open ("/dev/tivc", 0_RDWR, NULL)) < 0) {

t_error ("t_open failed")

;

exit (1)

;

)

if (t_bind (fd, NULL, NULL) < 0) {

t_error ("t_bind failed");
exit (2)

;

}

V ,

The first argument to t_open is the pathname of a file system node that

identifies the transport protocol that will supply the transport service. In this

example, /dev/tivc is a STREAMS clone device node that identifies a

generic, connection-based transport protocol [see clone(4)].

#sun
Nr microsystems

Revision A, of 27 March 1990

200 Transport-Level Programming

NOTE The name /dev/t ivc does not exist in SunOS. This is just a name used as an

example that represents the transport selection node.

The clone device finds an available minor device of the transport provider for

the user. It is opened for both reading and writing, as specified by the 0_RDWR
open flag. The third argument may be used to return the service characteristics of

the transport provider to the user. This information is useful when writing

protocol-independent software (discussed in the Guidelinesfor Protocol

Independence section, below.) For simplicity, the client and server in this exam-

ple ignore this information and assume the transport provider has the following

characteristics:

The transport address is an integer value that uniquely identifies each user.

The transport provider supports the T_COTS_ORD service type, and the

example will use the orderly release facility to release the connection.

User data may not be passed between users during either connection estab-

lishment or abortive release.

The transport provider does not support protocol-specific options. Because

these characteristics are not needed by the user, NULL is specified in the

third argument to t_open. If the user needed a service other than

T_COTS_ORD, another transport provider would be opened. An example

of the T_CLTS service invocation is presented in the Introduction to

Connectionless-Mode Service section.

The return value of t_open is an identifier for the transport endpoint that will

be used by all subsequent Transport Interface function calls. This identifier is

actually a file descriptor obtained by opening the transport protocol file [see

open(2)]. The significance of this fact is highlighted in the A Read/Write Inter-

face section.

After the transport endpoint is created, the client calls t_bind to assign an

address to the endpoint. The first argument identifies the transport endpoint. The

second argument describes the address the user would like to bind to the end-

point, and the third argument is set on return from t_bind to specify the

address that the provider bound.

The address associated with a server’s transport endpoint is important, because

that is the address used by all clients to access the server. However, the typical

client does not care what its own address is, because no other process will try to

access it. That is the case in this example, where the second and third arguments

to t_bind are set to NULL. A NULL second argument will direct the tran-

sport provider to choose an address for the user. A NULL third argument indi-

cates that the user does not care what address was assigned to the endpoint.

If either t_open or t_bind fail, the program will call t_error(3N) to

print an appropriate error message to stderr. If any Transport Interface rou-

tine fails, the global integer t_errno will be assigned an appropriate transport

error value. A set of such error values has been defined (in <tiuser . h>) for

the Transport Interface, and t_error will print an error message correspond-

ing to the value in t_errno. This routine is analogous to perror(3), which

prints an error message based on the value of errno. If the error associated

Asun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 201

The Server

with a transport function is a system error, t_errno will be set to TSYSERR,
and errno will be set to the appropriate value.

The server in this example must take similar local management steps before com-

munication can begin. The server must establish a transport endpoint through

which it will listen for connect indications. The necessary definitions and local

management steps are shown below:

include <tiuser.h>
include <stropts.h>
include <fcntl.h>
include <stdio.h>
include <signal.h>

define DISCONNECT -1

define SRV_ADDR 1

int conn_fd;
extern int t_errno;

main ()

1

int listen_fd;
struct t_bind *bind;
struct t_call *call;

if ((listen_fd = t_open ("/dev/tivc",
0_RDWR, NULL)) < 0) {

t_error ("t_open failed for listen_fd")

;

exit (1)

;

}

/*

* By assuming that the address is an integer value,

* this program may not run over another protocol.

*/

if ((bind = (struct t_bind *) t_alloc (listen_fd,
T_BIND, T_ALL))

== NULL) {

t_error ("t_alloc of t_bind structure failed");
exit (2)

;

1

bind->qlen = 1;

bind->addr . len = sizeof(int);
* (int *)bind->addr.buf = SRV_ADDR;

if (t_bind (listen_fd, bind, bind) < 0) {

t_error ("t_bind failed for listen_fd");
exit (3) ;

}

/* server’s well known address * /

/ * connection established here * /

/ * listening transport endpoint * /

® sun
microsystems

Revision A, of 27 March 1990

202 Transport-Level Programming

As with the client, the first step is to call t_open to establish a transport end-

point with the desired transport provider. This endpoint, listenJd, will be used

to listen for connect indications. Next, the server must bind its well-known

address to the endpoint. This address is used by each client to access the server.

The second argument to t_bind requests that a particular address be bound to

the transport endpoint. This argument points to a t_bind structure with the

following format:

where addr describes the address to be bound, and qlen indicates the maximum

outstanding connect indications that may arrive at this endpoint. All Transport

Interface structure and constant definitions are found in <tiuser . h>.

The address is specified using a netbuf structure that contains the following

members:

where bufpoints to a buffer containing the data, len specifies the bytes of data in

the buffer, and maxlen indicates the maximum bytes the buffer can hold (and

need only be set when data is returned to the user by a Transport Interface rou-

tine). For the t_bind structure, the data pointed to by b«/identifies a transport

address. It is expected that the structure of addresses will vary among each pro-

tocol implementation under the Transport Interface. The netbuf structure is

intended to support any such structure.

If the value of qlen is greater than 0, the transport endpoint may be used to listen

for connect indications. In such cases, t_bind directs the transport provider to

immediately begin queueing connect indications destined for the bound address.

Furthermore, the value of qlen indicates the maximum outstanding connect indi-

cations the server wishes to process. The server must respond to each connect

indication, either accepting or rejecting the request for connection. An outstand-

ing connect indication is one to which the server has not yet responded. Often, a

#sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 203

server will fully process a single connect indication and respond to it before

receiving the next indication. In this case, a value of 1 is appropriate for qlen.

However, some servers may wish to retrieve several connect indications before

responding to any of them. In such cases, qlen indicates the maximum number

of such outstanding indications the server will process. An example of a server

that manages multiple outstanding connect indications is presented in the

Advanced Topics section.

t_alloc(3N) is called to allocate the t_bind structure needed by t_bind.

t_alloc takes three arguments. The first is a file descriptor that references a

transport endpoint. This is used to access the characteristics of the transport pro-

vider [see t_open(3N)]. The second argument identifies the appropriate Tran-

sport Interface structure to be allocated. The third argument specifies which, if

any, netbuf buffers should be allocated for that structure. T_ALL specifies

that all netbuf buffers associated with the structure should be allocated, and

will cause the addr buffer to be allocated in this example. The size of this buffer

is determined from the transport provider characteristic that defines the max-

imum address size. The maxlen field of this netbuf structure will be set to the

size of the newly allocated buffer by t_alloc. The use of t_allocwill

help ensure the compatibility of user programs with future releases of the Tran-

sport Interface.

The server in this example will process connect indications one at a time, so qlen

is set to 1. The address information is then assigned to the newly allocated

t_bind structure. This t_bind structure will be used to pass information to

t_bind in the second argument, and also will be used to return information to

the user in the third argument.

On return, the t_bind structure will contain the address that was bound to the

transport endpoint. If the provider could not bind the requested address (perhaps

because it had been bound to another transport endpoint), it will choose another

appropriate address.

NOTE Each transport provider will manage its address space differently. Some tran-

sport providers may allow a single transport address to be bound to several tran-

sport endpoints, while others may require a unique address per endpoint. The

Transport Interface supports either choice. Based on its address management

rules, a provider will determine if it can bind the requested address. If not, it

will choose another valid addressfrom its address space and bind it to the tran-

sport endpoint.

The server must check the bound address to ensure that it is the one previously

advertised to clients. Otherwise, the clients will be unable to reach the server.

If t_bind succeeds, the provider will begin queueing connect indications. The

next phase of communication, connection establishment, is entered.

#sun
Xr microsystems

Revision A, of 27 March 1990

204 Transport-Level Programming

Connection Establishment The connection establishment procedures highlight the distinction between

clients and servers. The Transport Interface imposes a different set of procedures

in this phase for each type of transport user. The client initiates the connection

establishment procedure by requesting a connection to a particular server using

t_connect(3N). The server is then notified of the client’s request by calling

t_li sten(3N). The server may either accept or reject the client’s request. It

will call t_accept(3N) to establish the connection, or call t_snddis(3N)
to reject the request. The client will be notified of the server’s decision when
t_connect completes.

The Transport Interface supports two facilities during connection establishment

that may not be supported by all transport providers. The first is the ability to

transfer data between the client and server when establishing the connection.

The client may send data to the server when it requests a connection. This data

will be passed to the server by t_listen. Similarly, the server can send data

to the client when it accepts or rejects the connection. The connect characteristic

returned by t_open determines how much data, if any, two users may transfer

during connect establishment.

The second optional service supported by the Transport Interface during connec-

tion establishment is the negotiation of protocol options. The client may specify

protocol options that it would like the transport provider and/or the remote user.

The Transport Interface supports both local and remote option negotiation. As
discussed earlier, option negotiation is inherently a protocol-specific function.

Use of this facility is discouraged if protocol independent software is a goal (see

the Guidelinesfor Protocol Independence section).

The Qient Continuing with the client/server example, the steps needed by the client to

establish a connection are shown next:

The t_connect call establishes the connection with the server. The first argu-

ment to t_connect identifies the transport endpoint through which the con-

nection is established, and the second argument identifies the destination server.

This argument is a pointer to a t_call structure, which has the following for-

mat:

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 205

Event Handling

addr identifies the address of the server, opt may be used to specify protocol-

specific options that the client would like to associate with the connection, and

udata identifies user data that may be sent with the connect request to the server.

The sequence field has no meaning for t_connect.

t_alloc is called above to allocate the t_call structure dynamically. Once

allocated, the appropriate values are assigned. In this example, no options or

user data are associated with the t_connect call, but the server’s address

must be set. The third argument to t_alloc is set to T_ADDR to indicate that

an appropriate netbuf buffer should be allocated for the address. The server’s

address is then assigned to buf, and len is set accordingly.

The third argument to t_connect can be used to return information about the

newly established connection to the user, and may retrieve any user data sent by

the server in its response to the connect request. It is set to NULL by the client

here to indicate that this information is not needed. The connection will be esta-

blished on successful return of t_connect. If the server rejects the connect

request, t_connect will fail and set t_errno to TLOOK.

The TLOOK error has special significance in the Transport Interface. Some
Transport Interface routines may be interrupted by an unexpected asynchronous

transport event on the given transport endpoint, and TLOOK notifies the user that

an event has occurred. As such, TLOOK does not indicate an error with a Tran-

sport Interface routine, but the normal processing of that routine will not be per-

formed because of the pending event. The events defined by the Transport Inter-

face are listed here:

T_LISTEN
A request for a connection, called a connect indication, has arrived at the

transport endpoint.

T_CONNECT
The confirmation of a previously sent connect request, called a connect

confirmation, has arrived at the transport endpoint. The confirmation is gen-

erated when a server accepts a connect request.

TJDATA
User data has arrived at the transport endpoint.

T_EXDATA
Expedited user data has arrived at the transport endpoint. Expedited data

will be discussed later in this section.

Revision A, of 27 March 1990

206 Transport-Level Programming

The Server

T_DISCONNECT
A notification that the connection was aborted or that the server rejected a

connect request, called a disconnect indication, has arrived at the transport

endpoint.

T_ORDREL
A request for the orderly release of a connection, called an orderly release

indication, has arrived at the transport endpoint.

TJJDERR
The notification of an error in a previously sent datagram, called a unitdata

error indication, has arrived at the transport endpoint (see the Introduction to

Connectionless-Mode Service section).

It is possible in some states to receive one of several asynchronous events, as

described in the state tables of the State Transitions section. The t_look(3N)
routine enables a user to determine what event has occurred if a TLOOK error is

returned. The user can then process that event accordingly. In the example, if a

connect request is rejected, the event passed to the client will be a disconnect

indication. The client will exit if its request is rejected.

Returning to the example, when the client calls t_connect , a connect indica-

tion will be generated on the server’s listening transport endpoint. The steps

required by the server to process the event are presented below. For each client,

the server accepts the connect request and spawns a server process to manage the

connection.

if ((call = (struct t_call *)t_alloc (listen_fd,
T_CALL , T_ALL))

— NULL) {

t_error ("t_alloc of t_call structure failed");
exit (5)

;

}

while (1) {

if (t_listen (listen_fd, call) < 0) {

t_error ("t_listen failed for listen_fd");
exit (6)

;

}

if ((conn_fd = accept_call (listen_fd, call)) != DISCONNECT)
run_server (listen_fd)

;

>

(

The server will loop forever, processing each connect indication. First, the server

calls t_listen to retrieve the next connect indication. When one arrives, the

server calls accept_call to accept the connect request. accept_call
accepts the connection on an alternate transport endpoint (as discussed below)

and returns the value of that endpoint, connJd is a global variable that identifies

the transport endpoint where the connection is established. Because the connec-

tion is accepted on an alternate endpoint, the server may continue listening for

connect indications on the endpoint that was bound for listening. If the call is

accepted without error, run_server will spawn a process to manage the con-

nection.

f#sun
Xr microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 207

The server allocates a t_call structure to be used by t_listen. The third

argument to t_alloc, T_ALL, specifies that all necessary buffers should be

allocated for retrieving the caller’s address, options, and user data. As mentioned

earlier, the transport provider in this example does not support the transfer of

user data during connection establishment, and also does not support any proto-

col options. Therefore, t_alloc will not allocate buffers for the user data and

options. It must, however, allocate a buffer large enough to store the address of

the caller. t_alloc determines the buffer size from the addr characteristic

returned by t_open. The maxlen field of each netbuf structure will be set

to the size of the newly allocated buffer by t_alloc (maxlen is 0 for the user

data and options buffers).

Using the t_call structure, the server calls t_listen to retrieve the next

connect indicatioa If one is currently available, it is returned to the server

immediately. Otherwise, t_listen will block until a connect indication

arrives.

NOTE The Transport Interface supports an asynchronous modefor such routines that

will prevent a processfrom blocking. This feature is discussed in the Advanced

Topics section.

When a connect indication arrives, the server calls accept_call to accept the

client’s request, as follows:

Revision A, of 27 March 1990

208 Transport-Level Programming

/

exit (11)

;

>

}

return (resfd)

;

}

V

accept_call takes two arguments, listenJd identifies the transport endpoint

where the connect indication arrived, and call is a pointer to a t_call structure

that contains all information associated with the connect indication. The server

will first establish another transport endpoint by opening the clone device node of

the transport provider and binding an address. As with the client, a NULL value

is passed to t_bind to specify that the user does not care what address is

bound by the provider. The newly established transport endpoint, resfd, is used

to accept the client’s connect request.

The first two arguments of t_accept specify the listening transport endpoint

and the endpoint where the connection will be accepted respectively. A connec-

tion may be accepted on the listening endpoint. However, this would prevent

other clients from accessing the server for the duration of that connection.

The third argument of t_accept points to the t_call structure associated

with the connect indication. This structure should contain the address of the cal-

ling user and the sequence number returned by t_listen. The value of

sequence has particular significance if the server manages multiple outstanding

connect indications. The Advanced Topics section presents such an example.

Also, the t_call structure should identify protocol options the user would like

to specify, and user data that may be passed to the client. Because the transport

provider in this example does not support protocol options or the transfer of user

data during connection establishment, the t_call structure returned by
t_listen may be passed without change to t_accept.

For simplicity in the example, the server will exit if either the t_open or

t_bind call fails. exit(2) will close the transport endpoint associated with

listenJd, causing the transport provider to pass a disconnect indication to the

client that requested the connection. This disconnect indication notifies the client

that the connection was not established; t_connect will fail, setting

t_errno to TLOOK.

t_accept may fail if an asynchronous event has occurred on the listening tran-

sport endpoint before the connection is accepted, and t_errno will be set to

TLOOK. The state transition table in the State Transitions section shows that the

only event that may occur in this state with only one outstanding connect indica-

tion is a disconnect indication. This event may occur if the client decides to

undo the connect request it had previously initiated. If a disconnect indication

arrives, the server must retrieve the disconnect indication using t_r cvdi s

.

This routine takes a pointer to a t_dis con structure as an argument, which is

used to retrieve information associated with a disconnect indication. In this

example, however, the server does not care to retrieve this information, so it sets

the argument to NULL. After receiving the disconnect indication,

accept_call closes the responding transport endpoint and returns DISCON-
NECT, which informs the server that the connection was disconnected by the

client. The server then listens for further connect indications.

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 209

Data Transfer

Figure 9-5 illustrates how the server establishes connections.

Figure 9-5 Listening and Responding Transport Endpoints

The transport connection is established on the newly created responding end-

point, and the listening endpoint is freed to retrieve further connect indications.

Once the connection has been established, both the client and server may begin

transferring data over the connection using t_snd and t_rcv. In fact, the

Transport Interface does not differentiate the client from the server from this

point on. Either user may send and receive data, or release the connection. The

Transport Interface guarantees reliable, sequenced delivery of data over an exist-

ing connection.

Two classes of data may be transferred over a transport connection: normal and

expedited. Expedited data is typically associated with information of an urgent

nature. The exact semantics of expedited data are subject to the interpretations of

the transport provider. Furthermore, all transport protocols do not support the

notion of an expedited data class [see t_open(3N)].

All transport protocols support the transfer of data in byte stream mode, where

"byte stream" implies no concept of message boundaries on data that is

transferred over a connection. However, some transport protocols support the

preservation of message boundaries over a transport connection. This service is

supported by the Transport Interface, but protocol-independent software must not

rely on its existence.

The message interface for data transfer is supported by a special flag of t_snd
and t_rcv called T_MORE. The messages, called Transport Service Data

Units (TSDU), may be transferred between two transport users as distinct units.

The maximum size of a TSDU is a characteristic of the underlying transport pro-

tocol. This information is available to the user from t_open and

t_getinf o. Because the maximum TSDU size can be large (possibly unlim-

ited), the Transport Interface enables a user to transmit a message in multiple

units.

Revision A, of 27 March 1990

210 Transport-Level Programming

The Client

To send a message in multiple units over a transport connection, the user must

set the T_MORE flag on every t_snd call except the last. This flag indicates

that the user will send more data associated with the message in a subsequent call

to t_snd. The last message unit should be transmitted with T_MORE turned

off to indicate that this is the end of the TSDU.

Similarly, a TSDU may be passed to the user on the receiving side in multiple

units. Again, if t_rcv returns with the T_MORE flag set, the user should con-

tinue calling t_rcv to retrieve the remainder of the message. The last unit in

the message will be indicated by a call to t_rcv that does not set T_MORE.

CAUTION The T_MORE flag implies nothing about how the data may be packaged

below the Transport Interface. Furthermore, it implies nothing about how
the data may be delivered to the remote user. Each transport protocol, and
each implementation of that protocol, may package and deliver the data dif-

ferently.

For example, if a user sends a complete message in a single call to t_snd, there

is no guarantee that the transport provider will deliver the data in a single unit to

the remote transport user. Similarly, a TSDU transmitted in two message units

may be delivered in a single unit to the remote transport user. The message

boundaries may only be preserved by noting the value of the T_MORE flag on

t_sndand t_rcv. This will guarantee that the receiving user will see a mes-

sage with the same contents and message boundaries as was sent by the remote

user.

Continuing with the client/server example, the server will transfer a log file to the

client over the transport connection. The client receives this data and writes it to

its standard output file. A byte stream interface is used by the client and server,

where message boundaries (that is, the T_MORE flag) are ignored. The client

receives data using the following instructions:

r \

while ((nbytes = t_rcv(fd, buf, 1024, Sflags))
!= -1) {

if (fwrite(buf, 1, nbytes, stdout) < 0) {

fprintf (stderr, "fwrite failed\0)

;

}

exit (5)

;

}

J

The client continuously calls t_rcv to process incoming data. Ifnodatais

currently available, t_rcv blocks until data arrives. t_rcv will retrieve the

available data up to 1024 bytes, which is the size of the client’s input buffer, and

will return the number of bytes that were received. The client then writes this

data to standard output and continues. The data transfer phase will complete

when t_rcv fails. t_rcv will fail if an orderly release indication or discon-

nect indication arrives, as will be discussed later in this section. If the

fwrite(3S) call fails for any reason, the client will exit, thereby closing the

transport endpoint. If the transport endpoint is closed (either by exit or

t_close) when it is in the data transfer phase, the connection will be aborted

and the remote user will receive a disconnect indication.

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 211

The Server Looking now at the other side of the connection, the server manages its data

transfer by spawning a child process to send the data to the client. The parent

process then loops back to listen for further connect indications.

run_server is called by the server to spawn this child process as follows:

connrelease ()

{

/ * connjd is global because needed here * /

if (t_look (conn_fd) == T_DISCONNECT) {

fprintf (stderr, "connection aborted\0)

;

exit (12)

;

}

/ * else orderly release indication - normal exit * /

exit (0)

;

}

run_server (listen_fd)
int listen_fd;

{

int nbytes;
FILE *logfp; /* file pointer to log file */

char buf [1024]

;

switch (fork ()) {

case -1:

perror("fork failed");
exit (20)

;

default: /* parent */

/ * close connJd and then go up and listen again * /

if (t_close (conn_fd) < 0) {

t_error ("t_close failed for conn_fd")

;

exit (21)

;

1

return;

case 0: /* child */

/ * close listenJd and do service * /

if (t_close (listen_fd) < 0) {

t_error ("t_close failed for listen_fd")

;

exit (22)

;

}

if ((logfp = fopen ("logfile" , "r"))
== NULL) {

perror ("cannot open logfile")

;

exit (23)

;

)

signal (SIGPOLL, connrelease)

;

if (ioctl (conn_fd, I_SETSIG, S_INPUT) < 0) {

perror ("ioctl I_SETSIG failed");
exit (24)

;

}

if (t look (conn fd) != 0) {
/* was disconnect there? */

w sun
microsystems

Revision A, of 27 March 1990

212 Transport-Level Programming

/ N
fprintf (stderr, "t_look: unexpected event\0);
exit (25) ;

}

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)

if (t_snd (conn_fd, buf, nbytes, 0) < 0) {

t_error ("t_snd failed");
exit (26)

;

}

\ ,

After the fork, the parent process will return to the main processing loop and

listen for further connect indications. Meanwhile, the child process will manage

the newly established transport connection. If the fork call fails, exit will

close the transport endpoint associated with listenJd. This action will cause a

disconnect indication to be passed to the client, and the client’s t_connect
call will fail.

The server process reads 1024 bytes of the log file at a time and sends that data to

the client using t_snd. buf points to the start of the data buffer, and nbytes

specifies the number of bytes to be transmitted. The fourth argument is used to

specify optional flags. Two flags are currently supported: T_EXPEDITED may
be set to indicate that the data is expedited, and T_MORE may be set to define

message boundaries when transmitting messages over a connection. Neither flag

is set by the server in this example.

If the user begins to flood the transport provider with data, the provider may exert

back pressure to provide flow control. In such cases, t_snd will block until the

flow control is relieved, and will then resume its operation. t_snd will not

complete until nbyte bytes have been passed to the transport provider.

The t_snd routine does not look for a disconnect indication (signifying that the

connection was broken) before passing data to the provider. Also, because the

data traffic is flowing in one direction, the user will never look for incoming

events. If, for some reason, the connection is aborted, the user should be notified

because data may be lost. One option available to the user is to use t_look to

check for incoming events before each t_snd call. A more efficient solution is

the one presented in the example. The STREAMS I_SETSIG ioctl enables a

user to request a signal when a given event occurs [see streamio(5) and

signal(2)]. The STREAMS event of concern here is S_INPUT, which will

cause a signal to be sent to the user if any input arrives on the Stream referenced

by connj'd. If a disconnect indication arrives, the signal catching routine

(connrelease) will print an appropriate error message and then exit.

If the data traffic flowed in both directions in this example, the user would not

have to monitor the connection for disconnects. If the client alternated t_snd
and t_rcv calls, it could rely on t_rcv to recognize an incoming disconnect

indication.

#>sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 213

Connection Release

The Server

At any point during data transfer, either user may release the transport connection

and end the conversation. As mentioned earlier, two forms of connection release

are supported by the Transport Interface. The first, abortive release, breaks a

connection immediately and may result in the loss of any data that has not yet

reached the destination user. t_snddis may be called by either user to gen-

erate an abortive release. Also, the transport provider may abort a connection if a

problem occurs below the Transport Interface. t_s nddi s enables a user to

send data to the remote user when aborting a connection. Although the abortive

release is supported by all transport providers, the ability to send data when
aborting a connection is not.

When the remote user is notified of the aborted connection, t_rcvdis must be

called to retrieve the disconnect indication. This call will return a reason code

that indicates why the connection was aborted, and will return any user data that

may have accompanied the disconnect indication (if the abortive release was ini-

tiated by the remote user). This reason code is specific to the underlying tran-

sport protocol, and should not be interpreted by protocol-independent software.

The second form of connection release is orderly release, which gracefully ter-

minates a connection and guarantees that no data will be lost. All transport pro-

viders must support the abortive release procedure, but orderly release is an

optional facility that is not supported by all transport protocols.

The client-server example in this section assumes that the transport provider does

support the orderly release of a connection. When all the data has been

transferred by the server, the connection may be released as follows:

f N

if (t_sndrel (conn_fd) < 0) {

t_error ("t_sndrel failed");
exit (27)

;

1

pause () ; /* until orderly release indication arrives */

1

1

V /

The orderly release procedure consists of two steps by each user. The first user

to complete data transfer may initiate a release using t_sndrel, as illustrated

in the example. This routine informs the client that no more data will be sent by

the server. When the client receives such an indication, it may continue sending

data back to the server if desired. When all data has been transferred, however,

the client must also call t_sndrel to indicate that it is ready to release the

connection. The connection will be released only after both users have requested

an orderly release and received the corresponding indication from the other user.

In this example, data is transferred in one direction from the server to the client,

so the server does not expect to receive data from the client after it has initiated

the release procedure. Thus, the server simply calls pause (2) after initiating

the release. Eventually, the remote user will respond with its orderly release

request, and the indication will generate a signal that will be caught by

connrelease. Remember that the server earlier issued an I_SETSIG ioctl

microsystems
Revision A, of 27 March 1990

214 Transport-Level Programming

call to generate a signal on any incoming event. Since the only possible Tran-

sport Interface events that can occur in this situation are a disconnect indication

or orderly release indication, connrelease will terminate normally when the

orderly release indication arrives. The exit call in connrelease will close

the transport endpoint, thereby freeing the bound address for use by another user.

If a user process wants to close a transport endpoint without exiting, it may call

t_close.

The Client The client’s view of connection release is similar to that of the server. As men-
tioned earlier, the client continues to process incoming data until t_rcv fails.

If the server releases the connection (using either t_snddis or t_sndrel),
t_rcv will fail and set t_errno to TLOOK. The client then processes the

connection release as follows:

Under normal circumstances, the client terminates the transfer of data by calling

t_sndrel to initiate the connection release. When the orderly release indica-

tion arrives at the client’s side of the connection, the client checks to make sure

the expected orderly release indication has arrived. If so, it proceeds with the

release procedures by calling t_rcvrel to process the indication and

t_sndrel to inform the server that it is also ready to release the connection.

At this point the client exits, thereby closing its transport endpoint.

Because all transport providers do not support the orderly release facility just

described, users may have to use the abortive release facility provided by

t_snddis and t_rcvdi s. However, steps must be taken by each user to

prevent any loss of data. For example, a special byte pattern may be inserted in

the data stream to indicate the end of a conversation. Many mechanisms are pos-

sible for preventing data loss. Each application and high level protocol must

choose an appropriate mechanism given the target protocol environment and

requirements.

#sunW microsystems
Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 215

9.5. Introduction to This section describes the connectionless-mode service of the Transport Inter-

Connectionless-Mode face. Connectionless-mode service is appropriate for short-term request/response

Service interactions, such as transaction processing applications. Data are transferred in

self-contained units with no logical relationship required among multiple units.

The connectionless-mode services will be described using a transaction server as

an example. This server waits for incoming transaction queries, and processes

and responds to each query.

Local Management Just as with connection-mode service, the transport users must perform appropri-

ate local management steps before data can be transferred. A user must choose

the appropriate connectionless service provider using t_open and establish its

identity using t_bind.

t_optmgmt may be used to negotiate protocol options that may be associated

with the transfer of each data unit. As with the connection-mode service, each

transport provider specifies the options, if any, that it supports. Option negotia-

tion is therefore a protocol-specific activity.

In the example, the definitions and local management calls needed by the tran-

saction server are as follows:

include <stdio.h>
include <fcntl.h>
include <tiuser.h>

define SRV_ADDR 2 /* server’ s well known address */

main ()

{

int fd;

int flags;

struct t_bind *bind;

struct t_unitdata *ud;

struct t_uderr *uderr;

extern int t_errno;

if ((fd = t_open ("/dev/tidg", 0_RDWR, NULL)) < 0) {

t_error ("unable to open /dev/provider");
exit (1)

;

}

if ((bind = (struct t_bind *) t_alloc (fd,

TJ3IND, T_ADDR))
== NULL) {

t_error ("t_alloc of t_bind structure failed");
exit (2)

;

}

bind->addr . len = sizeof(int);
* (int *) bind->addr .buf = SRV_ADDR;
bind->qlen = 0;

V

sun
microsystems

Revision A, of 27 March 1990

/
—

if (t bindffd, bind, bind) < 0) {

\

t_error ("t_bind failed");

}

exit (3) ;

/*

* is the bound address correct?

*/

if (* (int *)bind->addr.buf != SRV ADDR) {

}

fprintf (stderr, "t_bind bound
exit (4)

;

wrong address\0)

;

V /

The local management steps should look familiar by now. The server establishes

a transport endpoint with the desired transport provider using t_open. Each

provider has an associated service type, so the user may choose a particular ser-

vice by opening the appropriate transport provider file. This connectionless-

mode server ignores the characteristics of the provider returned by t_open in

the same way as the users in the connection-mode example, setting the third

argument to NULL. For simplicity, the transaction server assumes the transport

provider has the following characteristics:

The transport address is an integer value that uniquely identifies each user.

The transport provider supports the T_CLTS service type (connectionless

transport service, or datagram).

The transport provider does not support any protocol-specific options.

The connectionless server also binds a transport address to the endpoint, so that

potential clients may identify and access the server. A t_bind structure is

allocated using t_alloc, and the buf and len fields of the address are set

accordingly.

One important difference between the connection-mode server and this

connectionless-mode server is that the qlen field of the t_bind structure has no

meaning for connectionless-mode service. That is because all users are capable

of receiving datagrams once they have bound an address. The Transport Inter-

face defines an inherent client-server relationship between two users while estab-

lishing a transport connection in the connection-mode service. However, no such

relationship exists in the connectionless-mode service. It is the context of this

example, not the Transport Interface, that defines one user as a server and another

as a client.

Because the address of the server is known by all potential clients, the server

checks the bound address returned by t_bind to ensure it is correct.

microsystems
Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 217

Data Transfer Once a user has bound an address to the transport endpoint, datagrams may be

sent or received over that endpoint Each outgoing message is accompanied by

the address of the destination user. In addition, the Transport Interface enables a

user to specify protocol options that should be associated with the transfer of the

data unit (for example, transit delay). As discussed earlier, each transport pro-

vider defines the set of options, if any, that may accompany a datagram. When
the datagram is passed to the destination user, the associated protocol options

may be returned as well.

The following sequence of calls illustrates the data transfer phase of the

connectionless-mode server:

if ((ud = (struct t_unitdata *) t_alloc (fd,

T_UNITDATA , T_ALL))
== NULL) {

t_error ("t_alloc of t_unitdata structure failed");
exit (5)

;

)

if ((uderr = (struct t_uderr *) t_alloc (fd,

T_UDERROR, T_ALL))
== NULL) {

t_error ("t_alloc of t_uderr structure failed");
exit (6)

;

}

while (1) {

if (t_rcvudata (fd, ud, Sflags) < 0) {

if (t_errno == TLOOK) {

I*

* Error on previously sent datagram
*/

if (t_rcvuderr (fd, uderr) < 0) {

exit (7)

;

)

fprintf (stderr, "baddatagram, error = %d\n",
uderr->error)

;

continue;

}

t_error ("t_rcvudata failed");
exit (8)

;

}

I*

* Query() processes the request and places the

* response in ud->udata.buf, setting ud->udata.len

*1

query (ud) ;

if (t_sndudata (fd, ud, 0) < 0) {

t error ("t sndudata failed");

SUE
microsystems

Revision A, of 27 March 1990

218 Transport-Level Programming

exit (9)

;

}

}

1

query ()

{

/* Merely a stubfor simplicity */

}

V V

The server must first allocate a t_unitdat a structure for storing datagrams,

which has the following format:

f
struct t_unitdata {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

}

v -

addr holds the source address of incoming datagrams and the destination address

of outgoing datagrams, opt identifies any protocol options associated with the

transfer of the datagram, and udata holds the data itself. The addr, opt, and

udata fields must all be allocated with buffers that are large enough to hold any

possible incoming values. As described in the previous section, the T_ALL
argument to t_alloc will ensure this and will set the maxlen field of each

netbuf structure accordingly. Because the provider does not support protocol

options in this example, no options buffer will be allocated, and maxlen will be

set to zero in the netbuf structure for options. A t_uderr structure is also

allocated by the server for processing any datagram errors, as will be discussed

later in this section.

The transaction server loops forever, receiving queries, processing the queries,

and responding to the clients. It first calls t_rcvudata to receive the next

query. t_rcvudata will retrieve the next available incoming datagram. If

none is currently available, t_rcvudata will block, waiting for a datagram to

arrive. The second argument of t_rcvudat a identifies the t_unitdata
structure where the datagram should be stored.

The third argument, flags, must point to an integer variable and may be set to

T_MORE on return from t_rcvudata to indicate that the user’s udata buffer

was not large enough to store the full datagram. In this case, subsequent calls to

t_rcvudata will retrieve the remainder of the datagram. Because t_alloc
allocates a udata buffer large enough to store the maximum datagram size, the

transaction server does not have to check the value of flags.

If a datagram is received successfully, the transaction server calls the query rou-

tine to process the request. This routine will store the response in the structure

pointed to by ud, and will set ud->udata.len to indicate the number of bytes in

the response. The source address returned by t_rcvudata in ud->addr will

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 219

Datagram Errors

9.6. A Read/Write
Interface

be used as the destination address by t_sndudata.

When the response is ready, t_sndudata is called to return the response to

the client. The Transport Interface prevents a user from flooding the transport

provider with datagrams using the same flow control mechanism described for

the connection-mode service. In such cases, t_sndudat a will block until the

flow control is relieved, and will then resume its operation.

If the transport provider cannot process a datagram that was passed to it by

t_sndudata, it will return a unit data error event, T_UDERR, to the user.

This event includes the destination address and options associated with the

datagram, plus a protocol-specific error value that describes what may be wrong
with the datagram. The reason a datagram could not be processed is

protocol-specific. One reason may be that the transport provider could not inter-

pret the destination address or options. Each transport protocol is expected to

specify all reasons for which it is unable to process a datagram.

NOTE The unit data error indication is not necessarily intended to indicate success or

failure in delivering the datagram to the specified destination. The transport

protocol decides how the indication will be used. Remember, the connectionless

service does not guarantee reliable delivery ofdata.

The transaction server will be notified of this error event when it attempts to

receive another datagram. In this case, t_rcvudata will fail, setting

t_errno to TLOOK. IfTLOOK is set, the only possible event is T_UDERR,
so the server calls t_rcvuderr to retrieve the event. The second argument to

t_rcvuderr is the t_uderr structure that was allocated earlier. This struc-

ture is filled in by t_rcvuderr and has the following format:

/ ———

N

struct t_uderr {

struct netbuf addr;
struct netbuf opt;
long error;

}

V

where addr and opt identify the destination address and protocol options as

specified in the bad datagram, and error is a protocol-specific error code that

indicates why the provider could not process the datagram. The transaction

server prints the error code and then continues by entering the processing loop

again.

A user may wish to establish a transport connection and then exec (2) an exist-

ing user program such as cat (1) to process the data as it arrives over the con-

nection. However, existing programs use read(2) and writ e(2) for their

input/output needs. The Transport Interface does not directly support a

read/write interface to a transport provider, but one is available with UNIX
System V. This interface enables a user to issue read and write calls over a

transport connection that is in the data transfer phase. This section describes the

read/write interface to the connection-mode service of the Transport Inter-

face. This interface is not available with the connectionless-mode service.

Revision A, of 27 March 1990

220 Transport-Level Programming

The read/write interface is presented using the client example of the

Connection-Mode Client section with some minor modifications. The clients are

identical until the data transfer phase is reached. At that point, this client will use

the read/write interface and cat(l) to process incoming data, cat can

be run without change over the transport connection. Only the differences

between this client and that of the example in the Connection-Mode Client sec-

tion are shown below.

#include <stropts.h>

/*

* Same local management and connection

* establishment steps.

*/

if (ioctl (fd, I_PUSH, "tirdwr") < 0) {

perror ("I_PUSH of tirdwr failed");
exit (5)

;

}

close (0)

;

dup (fd) ;

execl ("/bin/cat", "/bin/cat", 0) ;

perror ("execl of /bin/cat failed");
exit (6)

;

}

The client invokes the read/write interface by pushing the tirdwr(5)

module onto the Stream associated with the transport endpoint where the connec-

tion was established [see I_PUSH in streamio(5)]. This module converts the

Transport Interface above the transport provider into a pure read/write inter-

face. With the module in place, the client calls close(2) and dup(2) to estab-

lish the transport endpoint as its standard input file, and uses /bin/cat to

process the input. Because the transport endpoint identifier is a file descriptor,

the facility for duping the endpoint is available to users.

Because the Transport Interface has been implemented using STREAMS, the

facilities of this character input/output mechanism can be used to provide

enhanced user services. By pushing the tirdwr module above the transport

provider, the user’s interface is effectively changed. The semantics of read
and write must be followed, and message boundaries will not be preserved.

CAUTION The tirdwr module may only be pushed onto a Stream when the transport

endpoint is in the data transfer phase. Once the module is pushed, the user may

not call any Transport Interface routines. If a Transport Interface routine is

invoked, tirdwr will generate a fatal protocol error, EPROTO, on that Stream,

rendering it unusable. Furthermore, if the user pops the tirdwr module off the

Stream [see I_POP in streamio(5)], the transport connection will be aborted.

The exact semantics of write, read, and close using tirdwr are

described below. To summarize, t irdwr enables a user to send and receive

Asun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 22

1

data over a transport connection using read and write. This module will

translate all Transport Interface indications into the appropriate actions. The

connection can be released with the close system call.

write The user may transmit data over the transport connection using write. The

tirdwr module will pass data through to the transport provider. However, if a

user attempts to send a zero-length data packet, which the STREAMS mechan-

ism allows, tirdwr will discard the message. If for some reason the transport

connection is aborted (for example the remote user aborts the connection using

t_snddis), a STREAMS hangup condition will be generated on that Stream,

and further write calls will fail and set errno to ENXIO. The user can still

retrieve any available data after a hangup, however.

read read may be used to retrieve data that has arrived over the transport connection.

The tirdwr module will pass data through to the user from the transport pro-

vider. However, any other event or indication passed to the user from the pro-

vider will be processed by tirdwr as follows:

read cannot process expedited data because it cannot distinguish expedited

data from normal data for the user. If an expedited data indication is

received, tirdwr will generate a fatal protocol error, EPROTO, on that

Stream. This error will cause further system calls to fail. You must there-

fore be aware that you should not communicate with a process that is send-

ing expedited data.

If an abortive disconnect indication is received, tirdwr will discard the

indication and generate a STREAMS hangup condition on that Stream. Sub-

sequent read calls will retrieve any remaining data, and then read will

return zero for all further calls (indicating end-of-file).

If an orderly release indication is received, tirdwr will discard the indica-

tion and deliver a zero-length STREAMS message to the user. As described

in read(2), this notifies the user of end-of-file by returning 0 to the user.

If any other Transport Interface indication is received, tirdwr will gen-

erate a fatal protocol error, EPROTO, on that Stream. This will cause

further system calls to fail. If a user pushes tirdwr onto a Stream after

the connection has been established, such indications will not be generated.

close With tirdwr on a Stream, the user can send and receive data over a transport

connection for the duration of that connection. Either user may terminate the

connection by closing the file descriptor associated with the transport endpoint or

by popping the tirdwr module off the Stream. In either case, tirdwr will

take the following actions:

If an orderly release indication had previously been received by tirdwr,
an orderly release request will be passed to the transport provider to com-

plete the orderly release of the connection. The remote user, who initiated

the orderly release procedure, will receive the expected indication when data

transfer completes.

microsystems
Revision A, of 27 March 1990

222 Transport-Level Programming

If a disconnect indication had previously been received by t irdwr , no

special action is taken.

If neither an orderly release indication nor disconnect indication had previ-

ously been received by tirdwr, a disconnect request will be passed to the

transport provider to abortively release the connection.

If an error had previously occurred on the Stream and a disconnect indica-

tion has not been received by t irdwr, a disconnect request will be passed

to the transport provider.

A process may not initiate an orderly release after tirdwr is pushed onto a

Stream, but tirdwr will handle an orderly release properly if it is initiated by

the user on the other side of a transport connection. If the client in this section is

communicating with the server program in the Connection-Mode Client section,

that server will terminate the transfer of data with an orderly release request. The

server then waits for the corresponding indication from the client. At that point,

the client exits and the transport endpoint is closed. As explained in the first bul-

let item above, when the file descriptor is closed, tirdwr will initiate the ord-

erly release request from the client’s side of the connection. This will generate

the indication that the server is expecting, and the connection will be released

properly.

9.7. Advanced Topics This section presents important concepts of the Transport Interface that have not

been covered in the previous section. First, an optional non-blocking (asynchro-

nous) mode for some library calls is described. Then, an advanced programming

example is presented that defines a server that supports multiple outstanding con-

nect indications and operates in an event driven manner.

Many Transport Interface library routines may block waiting for an incoming

event or the relaxation of flow control. However, some time-critical applications

should not block for any reason. Similarly, an application may wish to do local

processing while waiting for some asynchronous transport interface event.

Support for asynchronous processing of Transport Interface events is available to

applications using a combination of the STREAMS asynchronous features

(poll) and the non-blocking mode of the Transport Interface library routines

(I_SETSIG ioctl).

In addition, each Transport Interface routine that may block waiting for some
event can be run in a special non-blocking mode. For example, t_listenwill
normally block, waiting for a connect indication. However, a server can periodi-

cally poll a transport endpoint for existing connect indications by calling

t_listen in the non-blocking (or asynchronous) mode. The asynchronous

mode is enabled by setting 0_NDELAY on the file descriptor. This can be set as

a flag on t_open, or by calling fcnt 1(2) before calling the Transport Inter-

face routine, fcnt 1 can be used to enable or disable this mode at any time.

All programming examples illustrated throughout this guide use the default, syn-

chronous mode of processing.

0_NDELAY affects each Transport Interface routine in a different manner. To
determine the exact semantics of 0_NDELAY for a particular routine, see the

Asynchronous Execution

Mode

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 223

Advanced Programming
Example

appropriate pages in Section 3N of the SunOS Reference Manual.

The following example demonstrates two important concepts. The first is a

server’s ability to manage multiple outstanding connect indications. The second

is an illustration of the ability to write event-driven software using the Transport

Interface and the STREAMS system call interface.

The server example in the Connection-Mode Client section was capable of sup-

porting only one outstanding connect indication, but the Transport Interface sup-

ports the ability to manage multiple outstanding connect indications. One reason

a server might wish to receive several, simultaneous connect indications is to

impose a priority scheme on each client. A server may retrieve several connect

indications, and then accept them in an order based on a priority associated with

each client. A second reason for handling several outstanding connect indica-

tions is that the single-threaded scheme has some limitations. Depending on the

implementation of the transport provider, it is possible that while the server is

processing the current connect indication, other clients will find it busy. If, how-

ever, multiple connect indications can be processed simultaneously, the server

will be found to be busy only if the maximum allowed number of clients attempt

to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for

incoming Transport Interface events, and then takes the appropriate actions for

the current event. The example demonstrates the ability to poll multiple tran-

sport endpoints for incoming events.

The definitions and local management functions needed by this example are

similar to those of the server example in the Introduction to Connectionless-

Mode Service section.

#include
finclude
#include
#include
finclude
finclude

<tiuser.h>
<fcntl . h>

<stdio . h>
<poll . h>
<stropts .h>

<signal . h>

fdefine NUM_FDS 1

fdefine MAX_CONN_IND 4

fdefine SRV ADDR 1 / * server’ s well known address * /

int conn_fd; /* server connection here */

extern int t_errno;

/ * holds connect indications * /

Struct t_call *calls [NUM_FDS] [MAX_CONN_IND]

;

main ()

{

struct pollfd pollfds [NUM_FDS]

;

struct t_bind *bind;
int i;

m sun
microsystems

Revision A, of 27 March 1990

224 Transport-Level Programming

* Only opening and binding one transport endpoint,

* but more could be supported

*1

if ((pollfds [0] . fd = t_open ("/dev/tivc",
0_RDWR, NULL)) < 0) {

t_error ("t_open failed");
exit (1) ;

if ((bind = (struct tjbind *) t_alloc (pollfds [0] . fd,

T_BIND, T_ALL))
== NULL) {

t_error ("t_alloc of t_bind structure failed");
exit (2)

;

}

bind->qlen = MAX_CONN_IND;
bind->addr . len = sizeof(int);
* (int *)bind->addr.buf = SRV_ADDR;

if (t_bind (pollfds [0] . fd, bind, bind) < 0) {

t_error ("t_bind failed");
exit (3)

;

}

/*

* Was the correct address bound?
*/

if (* (int *) bind->addr .buf != SRV_ADDR) {

fprintf (stderr, "t_bind bound wrong addressO)

;

exit (4)

;

The file descriptor returned by t_open is stored in a pollfd structure [see

poll (2)] that will be used to poll the transport endpoint for incoming data.

Notice that only one transport endpoint is established in this example. However,

the remainder of the example is written to manage multiple transport endpoints.

Several endpoints could be supported with minor changes to the above code.

An important aspect of this server is that it sets qlen to a value greater than 1 for

t_bind. This indicates that the server is willing to handle multiple outstanding

connect indications. Remember that the earlier examples single-threaded the

connect indications and responses. The server would accept the current connect

indication before retrieving additional connect indications. This example, how-
ever, can retrieve up to MAX_CONN_LND connect indications at one time

before responding to any of them. The transport provider may negotiate the

value of qlen downward if it cannot support MAX_CONN_IND outstanding con-

nect indications.

Once the server has bound its address and is ready to process incoming connect

requests, it does the following:

#sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 225

pollfds [0]. events = POLLIN;

while (1) {

if (poll (pollfds, NUM_FDS, -1) < 0) {

perror("poll failed");
exit (5) ;

1

for (i = 0; i < NUM_FDS; i++) {

switch (pollfds [i] . revents) {

default

;

perror("poll returned error event");
exit (6)

;

case 0:

continue;

case POLLIN:
do_event (i, pollfds [i] . fd) ;

service_conn_ind (i, pollfds [i] . fd)

;

The events field of the pollfd structure is set to POLLIN, which will notify

the server of any incoming Transport Interface events. The server then enters an

infinite loop, in which it will poll the transport endpoint(s) for events, and

then process those events as they occur.

The poll call will block indefinitely, waiting for an incoming event. On
return, each entry (corresponding to each transport endpoint) is checked for an

existing event. If revents is set to 0, no event has occurred on that endpoint. In

this case, the server continues to the next transport endpoint. If revents is set to

POLLIN, an event does exist on the endpoint. In this case, do_event is called

to process the event. If revents contains any other value, an error must have

occurred on the transport endpoint, and the server will exit.

For each iteration of the loop, if any event is found on the transport endpoint,

service_conn_ind is called to process any outstanding connect indications.

However, if another connect indication is pending, service_conn_ind will

save the current connect indication and respond to it later. This routine will be

explained shortly.

If an incoming event is discovered, the following routine is called to process it:

c

do event (slot, fd)

{

struct t_discon *discon;
int i

;

switch (t_look(fd)) {

default

:

V

sen
microsystems

Revision A, of 27 March 1990

226 Transport-Level Programming

fprintf (stderr, "t_look: unexpected event\0)

;

exit (7)

;

case T_ERROR:
fprintf (stderr, "t_look returned T_ERROR event\0)

;

exit (8)

;

case -1:

t_error ("t_look failed");
exit (9)

;

case 0:

/ * since POLUN returned, this should not happen * /

fprintf (stderr, "t_look returned no event\0)

;

exit (10)

;

case T_LISTEN:
/*

* findfree element in calls array

*1

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls [slot] [i] == NULL)
break;

}

if ((calls [slot] [i] = (struct t_call *) t_alloc (fd,

T_CALL, T_ALL))
== NULL) {

t_error ("t_alloc of t_call structure failed");
exit (11) ;

)

if (t_listen (fd, calls [slot] [i]) < 0) {

t_error ("t_listen failed");
exit (12)

;

}

break;

case T_DISCONNECT:
discon = (struct t_discon *) t_alloc (fd,

T_DIS, T_ALL) ;

if (t_rcvdis (fd, discon) < 0) {

t_error ("t_rcvdis failed");
exit (13) ;

1

/*

* find call ind in array and delete it

*/

for (i = 0; i < MAX_CONN_IND; i++) {

if (discon->sequence ==

calls [slot] [i] ->sequence) {

t_free (calls [slot] [i] , T_CALL)

;

calls [slot] [i] = NULL;

}

}

t_free (discon, T_DIS)

;

break;

« sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 227

This routine takes a number, slot, and a file descriptor, fd, as arguments, slot is

used as an index into the global array calls. This array contains an entry for each

polled transport endpoint, where each entry consists of an array of t_call
structures that hold incoming connect indications for that transport endpoint.

The value of slot is used to identify the transport endpoint of interest.

do_event calls t_look to determine the Transport Interface event that has

occurred on the transport endpoint referenced byfd. If a connect indication

(T_LISTEN event) or disconnect indication (T_DISCONNECT event) has

arrived, the event is processed. Otherwise, the server prints an appropriate error

message and exits.

For connect indications, do_event scans the array of outstanding connect

indications looking for the first free entry. A t_call structure is then allocated

for that entry, and the connect indication is retrieved using t_list en. There

must always be at least one free entry in the connect indication array, because the

array is large enough to hold the maximum number of outstanding connect indi-

cations as negotiated by t_bind. The processing of the connect indication is

deferred until later.

If a disconnect indication arrives, it must correspond to a previously received

connect indication. This scenario arises if a client attempts to undo a previous

connect request. In this case, do_event allocates a t_di scon structure to

retrieve the relevant disconnect information. This structure has the following

members:

struct t_discon {

struct netbuf udata;

int reason;
int sequence;

1

V

where udata identifies any user data that might have been sent with the discon-

nect indication, reason contains a protocol-specific disconnect reason code, and

sequence identifies the outstanding connect indication that matches this discon-

nect indication.

Next, t_rcvdis is called to retrieve the disconnect indication. The array of

connect indications for slot is then scanned for one that contains a sequence

number that matches the sequence number in the disconnect indication. When
the connect indication is found, it is freed and the corresponding entry is set to

NULL.

As mentioned earlier, if any event is found on a transport endpoint,

service_conn_ind is called to process all currently outstanding connect

indications associated with that endpoint as follows:

#sunV microsystems
Revision A, of 27 March 1990

228 Transport-Level Programming

service_conn_ind (slot, fd)

{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls [slot] [i] == NULL)
continue;

if ((conn_fd = t_open ("/dev/tivc", 0_RDWR, NULL))
< 0) {

t_error ("open failed");
exit (14)

;

}

if (t_bind(conn_fd, NULL, NULL) < 0) {

t_error ("t_bind failed");
exit (15)

;

}

if (t_accept (fd, conn_fd, calls [slot] [i]) < 0) {

if (t_errno - TLOOK) {

t_close (conn_fd)

;

return;

}

t_error ("t_accept failed");
exit (16)

;

J

t_free (calls [slot] [i] , T_CALL)

;

calls [slot] [i] = NULL;

run_server (fd)

;

}

}

V

For the given slot (the transport endpoint), the array of outstanding connect indi-

cations is scanned. For each indication, the server will open a responding tran-

sport endpoint, bind an address to the endpoint, and then accept the connection

on that endpoint. If another event (connect indication or disconnect indication)

arrives before the current indication is accepted, t_accept will fail and set

t_errno to TLOOK.

NOTE The user cannot accept an outstanding connect indication ifany pending connect
indication events or disconnect indication events exist on that transport endpoint.

If this error occurs, the responding transport endpoint is closed and

service_conn_ind will return immediately (saving the current connect indi-

cation for later processing). This causes the server’s main processing loop to be
entered, and the new event will be discovered by the next call to poll. In this

way, multiple connect indications may be queued by the user.

Eventually, all events will be processed, and service_conn_ind will be
able to accept each connect indication in turn. Once the connection has been
established, the run_server routine used by the server in the Connection-
Mode Client section is called to manage the data transfer.

®sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 229

9.8. State Transitions

Transport Interface States

Table 9-6

Outgoing Events

These tables describe all state transitions associated with the Transport Interface.

First, however, the states and events will be described.

Table 9-6 defines the states used to describe the Transport Interface state transi-

tions.

Transport Interface States

State Description Service Type

TJJNINIT uninitialized - initial and

final state of interface

T_COTS,
T_COTS_ORD, T_CLTS

T_UNBND initialized but not bound T_COTS,
T_COTS_ORD, T_CLTS

T_IDLE no connection established T_COTS,
T_COTS_ORD, T_CLTS

T_OUTCON outgoing connection

pending for client

T_COTS, T_COTS_ORD

TJNCON incoming connection

pending for server

T_COTS, T_COTS_ORD

T_DATAXFER data transfer T_COTS, T_COTS_ORD

T_OUTREL outgoing orderly release

(waiting for orderly

release indication)

T_COTS_ORD

TJNREL incoming orderly release

(waiting to send orderly

release request)

T_COTS_ORD

The outgoing events described in Table 9-7 correspond to the return of the

specified transport routines, where these routines send a request or response to

the transport provider.

In the figure, some events (such as acceptN) are distinguished by the context in

which they occur. The context is based on the values of the following variables:

ocnt

count of outstanding connect indications

fd file descriptor of the current transport endpoint

resfd

file descriptor of the transport endpoint where a connection will be accepted

f#sun
Xr microsystems

Revision A, of 27 March 1990

230 Transport-Level Programming

Incoming Events

Table 9-7 Transport Interface Outgoing Events

Event Description Service Type
opened successful return of t open T_COTS,

T_COTS_ORD, T_CLTS
bind successful return of t_bind T_COTS,

T_COTS_ORD, T_CLTS
optmgmt successful return of t_optmgmt T_COTS,

T_COTS_ORD, T_CLTS
unbind successful return oft unbind T_COTS,

T_COTS_ORD, T_CLTS
closed successful return oft close T_COTS,

T_COTS_ORD, T_CLTS
connectl successful return of t_connect in

synchronous mode
T_COTS, T_COTS_ORD

connect2 TNODATA error on t_connect
in asynchronous mode, orTLOOK
error due to a disconnect indication

arriving on the transport endpoint

T_COTS, T_COTS_ORD

accept

1

successful return of t accept
with ocnt == 1 ,fd == resfd

T_COTS, T_COTS_ORD

accept2 successful return of t accept
with ocnt == \,fd != resfd

T_COTS, T_COTS_ORD

accept3 successful return of t accept
with ocnt > 1

T_COTS, T_COTS_ORD

snd successful return of t snd T_COTS, T_COTS_ORD
snddisl successful return of t_snddis

with ocnt <= 1

T_COTS, T_COTS_ORD

snddis2 successful return of t_snddis
with ocnt > 1

T_COTS, T_COTS_ORD

sndrel successful return of t sndrel T_COTS_ORD
sndudata successful return of t sndudat a T_CLTS

The incoming events correspond to the successful return of the specified routines,

where these routines retrieve data or event information from the transport pro-

vider. The only incoming event not associated directly with the return of a rou-

tine is pass conn, which occurs when a user transfers a connection to another
transport endpoint. This event occurs on the endpoint that is being passed the

connection, despite the fact that no Transport Interface routine is issued on that

endpoint. pass_conn is included in the state tables to describe the behavior when
a user accepts a connection on another transport endpoint.

In Table 9-8, the rcvdis events are distinguished by the context in which they
occur. The context is based on the value of ocnt, which is the count of outstand-
ing connect indications on the transport endpoint.

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 23

1

Table 9-8

Transport User Actions

State Tables

Transport Interface Incoming Events

Incoming

Event Description Service Type

listen successful return of t_listen T_COTS, T_COTS_ORD

rcvconnect successful return of t_rcvconnect T_COTS, T_COTS_ORD

rev successful return of t_rcv T_COTS, T_COTS_ORD

rcvdisl successful return of t_rcvdis with

oent <= 0

T_COTS, T_COTS_ORD

rcvdis2 successful return of t_rcvdis with

oent == 1

T_COTS, T_COTS_ORD

rcvdis3 successful return of t revdis with

ocnt> 1

T_COTS, T_COTS_ORD

rcvrel successful return of t_rcvrel T_COTS_ORD

revudata successful return of t_rcvudata T_CLTS

revuderr successful return of t_rcvuderr T_CLTS

pass_conn receive a passed connection T_COTS, T_COTS_ORD

In the state tables that follow, some state transitions are accompanied by a list of

actions the transport user must take. These actions are represented by the nota-

tion [n], where n is the number of the specific action as described below.

[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated in t_accept.

The following tables describe the Transport Interface state transitions. Given a

current state and an event, the transition to the next state is shown, as well as any

actions that must be taken by the transport user (indicated by [n]). The state is

that of the transport provider as seen by the transport user.

The contents of each box represent the next state, given the current state

(column) and the current incoming or outgoing event (row). An empty box

represents a state/event combination that is invalid. Along with the next state,

each box may include an action list (as specified in the previous section). The

transport user must take the specific actions in the order specified in the state

table.

The following should be understood when studying the state tables:

The t_close routine is referenced in the state tables (see closed event in

Table 9-1), but may be called from any state to close a transport endpoint. If

t_close is called when a transport address is bound to an endpoint, the

address will be unbound. Also, if t_close is called when the transport

connection is still active, the connection will be aborted.

•sun
Xr microsystems

Revision A, of 27 March 1990

232 Transport-Level Programming

If a transport user issues a routine out of sequence, the transport provider

will recognize this and the routine will fail, setting t_errno to TOUT-
STATE. The state will not change.

If any other transport error occurs, the state will not change unless explicitly

stated on the manual page for that routine. The exception to this is a

TLOOK or TNODATA error on t_connect, as described in Table 9-1.

The state tables assume correct use of the Transport Interface.

The support routines t_getinfo, t_getstate, t_alloc,
t_free, t_sync, t_look, and t_error are excluded from the state

tables because they do not affect the state.

A separate table is shown for common local management steps, data transfer in

connectionless-mode, and connection-establishment/connection-release/data-

transfer in connection-mode.

Figure 9-6 Common Local Management State Table

state

eveiu\.
TJJNINIT T_UNBND T_IDLE

opened TJJNBND

bind TJDLE [1]

optmgmt TJDLE

unbind T_UNBND

closed T_UNiNrr

Figure 9-7 Connectionless-Mode State Table

state

event^^ TJDLE

sndudata TJDLE

rcvudata TJDLE

rcvuderr TJDLE

&sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 233

Figure 9-8 Connection-Mode State Table

'X state

event Nv
T_EDLE T.OUTCON TJNCON T.DATAXFER T.OUTREL T.INREL

connectl T.DATAXFER

connect2 T_OUTCON

rcvconnect T.DATAXFER

listen TJNCON [2] TJNCON [2]

accept

1

T_DATAXFER[3]

accept2 T.IDLE [3] [4]

accept3 TJNCON [3] [4]

snd T.DATAXFER T.INREL

rev T.DATAXFER T.OUTREL

snddis 1 T.IDLE T.IDLE [3] T.IDLE T.IDLE T.IDLE

snddis2 TJNCON [3]

rcvdisl T.IDLE T.IDLE T.IDLE T.IDLE

rcvdis2 T.IDLE [3]

rcvdis3 T.INCON [3]

sndrel T.OUTREL T.IDLE

rcvrel T.INREL T.IDLE

pass_conn T.DATAXFER

9.9. Guidelines for Protocol By defining a set of services common to many transport protocols, the Transport

Independence Interface offers protocol independence for user software. However, all transport

protocols do not support all the services supported by the Transport Interface. If

software must be run in a variety of protocol environments, only the common
services should be accessed. The following guidelines highlight services that

may not be common to all transport protocols.

In the connection-mode service, the concept of a transport service data unit

(TSDU) may not be supported by all transport providers. The user should

make no assumptions about the preservation of logical data boundaries

across a connection. If messages must be transferred over a connection, a

protocol should be implemented above the Transport Interface to support

message boundaries.

Protocol and implementation specific service limits are returned by the

t_open and t_getinfo routines. These limits are useful when allocat-

ing buffers to store protocol-specific transport addresses and options. It is

the responsibility of the user to access these limits and then adhere to the

limits throughout the communication process.

Asun
microsystems

Revision A, of 27 March 1990

234 Transport-Level Programming

User data should not be transmitted with connect requests or disconnect

requests [see t_connect(3N) and t_snddis(3N)]. All transport proto-

cols do not support this capability.

The buffers in the t_call structure used for t_listen must be large

enough to hold any information passed by the client during connection

establishment. The server should use the T_ALL argument to t_alloc,
which will determine the maximum buffer sizes needed to store the address,

options, and user data for the current transport provider.

The user program should not look at or change options that are associated

with any Transport Interface routine. These options are specific to the

underlying transport protocol. The user should choose not to pass options

with t_connect or t_sndudata. In such cases, the transport provider

will use default values. Also, a server should use the options returned by
t_listen when accepting a connection.

Protocol-specific addressing issues should be hidden from the user program.

A client should not specify any protocol address on t_bind, but instead

should allow the transport provider to assign an appropriate address to the

transport endpoint. Similarly, a server should retrieve its address for

t_bind in such a way that it does not require knowledge of the transport

provider’s address space. Such addresses should not be hard-coded into a

program. A name server mechanism could be useful in this scenario, but the

details for providing such a service are outside the scope of the Transport

Interface.

The reason codes associated with t_rcvdis are protocol-dependent. The
user should not interpret this information if protocol-independence is a con-

cern.

The error codes associated with t_rcvuderr are protocol-dependent.

The user should not interpret this information if protocol-independence is a

concern.

The names of devices should not be hard-coded into programs, because the

device node identifies a particular transport provider, and is not protocol

independent.

The optional orderly release facility of the connection-mode service (pro-

vided by t_sndrel and t_rcvrel) should not be used by programs

targeted for multiple protocol environments. This facility is not supported

by all connection-based transport protocols. In particular, its use will

prevent programs from successfully communicating with ISO open systems.

9.10. Some Examples The examples presented throughout this guide are shown in entirety in this

appendix.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 235

Connection-Mode Client The following code represents the connection-mode client program described in

the Connection-Mode Client section. This client establishes a transport connec-

tion with a server, and then receives data from the server and writes it to its stan-

dard output. The connection is released using the orderly release facility of the

Transport Interface. This client will communicate with each of the connection-

mode servers presented in the guide.
.

#include <stdio.h>
include <tiuser.h>
include <fcntl.h>

define SRV_ADDR 1 /* server’s well known address */

main ()

1

int fd;

int nbytes;
int flags = 0;

char buf [1024]

;

struct t_call *sndcall;
extern int t_errno;

if ((fd = t_open ("/dev/tivc", 0_RDWR, NULL)) < 0) {

t_error ("t_open failed");
exit (1)

;

}

if (t_bind (fd, NULL, NULL) < 0) {

t_error ("t_bind failed");
exit (2)

;

)

/*

* By assuming that the address is an integer value,

* this program may not run over another protocol.

*1

if ((sndcall = (struct t_call *) t_alloc (fd,

T_CALL, T_ADDR))
== NULL) {

t_error ("t_alloc failed");
exit (3)

;

}

sndcall->addr . len = sizeof (int)

;

* (int *) sndcall->addr .buf = SRV_ADDR;

if (t_connect (fd, sndcall, NULL) < 0) {

t_error ("t_connect failed for fd");

exit (4)

;

}

while ((nbytes = t_rcv(fd, buf, 1024, Sflags))
!= -1) {

if (fwrite(buf, 1, nbytes, stdout) < 0) {

fprintf (stderr, "fwrite failed\0)

;

V

m sun
Xr microsystems

Revision A, of 27 March 1990

236 Transport-Level Programming

exit (5)

;

1

}

if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)
) {

if (t_rcvrel (fd) < 0) {

t_error ("t_rcvrel failed");
exit (6)

;

}

if (t_sndrel (fd) < 0) {

t_error ("t_sndrel failed");
exit (7)

;

1

exit (0)

;

1

t_error ("t_rcv failed") ;

exit (8)

;

1

v >

Connection-Mode Server The following code represents the connection-mode server program described in

the Connection-Mode Client section. This server establishes a transport connec-
tion with a client, and then transfers a log file to the client on the other side of the

connection. The connection is released using the orderly release facility of the

Transport Interface. The connection-mode client presented earlier will commun-
icate with this server.

include <tiuser.h>
include <stropts.h>
include <fcntl.h>
include <stdio.h>
include <signal.h>

define DISCONNECT -1

define SRV_ADDR 1

int conn_fd;
extern int t_errno;

main ()

1

/ * server' swell known address * /

/ * connection established here * /

/ * listening transport endpoint * /int listen_fd;
struct t_bind *bind;
struct t call *call;

if ((listen_fd = t_open ("/dev/tivc", 0_RDWR, NULL))
< 0) {

t_error ("t_open failed for listen_fd")

;

exit (1)

;

}

/*

Asun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 237

* By assuming that the address is an integer value,

* this program may not run over another protocol.

*1

if ((bind = (struct t_bind *) t_alloc (listen_fd,
T_BIND, T_ALL))

== NULL) {

t_error ("t_alloc of t_bind structure failed");
exit (2) ;

}

bind->qlen = 1

;

bind->addr . len = sizeof(int);
* (int *) bind->addr . buf = SRV_ADDR;

if (t_bind (listen_fd, bind, bind) < 0) {

t_error ("t_bind failed for listen_fd")

;

exit (3)

;

}

/*

* Was the correct address bound?
*1

if (* (int *) bind->addr . buf != SRV_ADDR) {

fprintf (stderr, "t_bind bound wrong address\0)

;

exit (4)

;

if ((call = (struct t_call *) t_alloc (listen_fd,
T_CALL, T_ALL))

== NULL) {

t_error ("t_alloc of t_call structure failed");
exit (5)

;

while (1) {

if (t_listen (listen_fd, call) < 0) {

t_error ("t_listen failed for listen_fd")

;

exit (6)

;

}

}

if ((conn_fd = accept_call (listen_fd, call))
! = DISCONNECT)
run server (listen fd)

;

accept_call (listen_fd, call)
int listen_fd;
struct t_call *call;

{

int resfd;

if ((resfd = t_open ("/dev/tivc", 0_RDWR, NULL)) < 0) {

t_error ("t_open for responding fd failed");
exit (7) ;

#> sun
microsystems

Revision A, of 27 March 1990

}

if (t_bind (resfd, NULL, NULL) < 0) {

t_error ("tjbind for responding fd failed");
exit (8) ;

}

if (t_accept (listen_fd, resfd, call) < 0) {

if (t_errno == TLOOK) { /* must be a disconnect */

if (t_rcvdis (listen_fd, NULL) < 0) {

t_error ("t_rcvdis failed for listen_fd");
exit (9)

;

)

if (t_close (resfd) < 0) {

t_error ("t_close failed for responding fd") ;

exit (10)

;

}

/* go backup and listenfor other calls */

return (DISCONNECT) ;

1

t_error ("t_accept failed");
exit (11);

}

return (resfd)

;

)

connrelease (

)

{

/* connJd is global because needed here */

if (t_look (conn_fd) == T_DISCONNECT) {

fprintf (stderr, "connection abortedO)

;

exit (12)

;

)

/ * else orderly release indication - normal exit * /

exit (0) ;

)

run_server (listen_fd)
int listen_fd;

{

int nbytes;
FILE *logfp; /* file pointer to log file */

char buf [1024]

;

switch (fork()) {

case -1:

perror("fork failed");
exit (20)

;

w sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 239

default: /* parent */

/ * close connjd and then go up and listen again * /

if (t_close (conn_fd) < 0) {

t_error ("t_close failed for conn_fd")

;

exit (21) ;

}

return;

case 0: /* child */

/ * close listenJd and do service * /

if (t_close (listen_fd) < 0) {

t_error ("t_close failed for listen_fd");
exit (22)

;

}

if ((logfp = fopen ("logfile", "r"))
== NULL) {

perror ("cannot open logfile")

;

exit (23)

;

1

signal (SIGPOLL, connrelease)

;

if (ioctl (conn_fd, I_SETSIG, S_INPUT) < 0) {

perror ("ioctl I_SETSIG failed");
exit (24)

;

}

if (t_look (conn_fd) != 0) { /* was disconnect there? */

fprintf (stderr, "t_look: unexpected eventO)

;

exit (25)

;

}

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)

if (t_snd (conn_fd, buf, nbytes, 0) < 0) {

t_error ("t_snd failed");
exit (26)

;

}

if (t_sndrel (conn_fd) < 0) {

t_error ("t_sndrel failed");
exit (27)

;

}

pause () ; /* until orderly release indication arrives */

}

}

Connectionless-Mode

Transaction Server

The following code represents the connectionless-mode transaction server pro-

gram described in the Introduction to Connectionless-Mode Service section.

This server waits for incoming datagram queries, and then processes each query

and sends a response.— A

include <stdio.h>
>& sun

microsystems
Revision A, of 27 March 1990

240 Transport-Level Programming

#include <fcntl.h>
#include <tiuser.h>

define SRV_ADDR 2 /* server s well known address */

main ()

{

int fd;

int flags;
struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;
extern int t errno;

if ((fd = t_open ("/dev/tidg", 0_RDWR, NULL)) < 0) {

t_error ("unable to open /dev/provider");
exit (1)

;

)

if ((bind = (struct t_bind *) t_alloc (fd,

T_BIND, T_ADDR))
== NULL) {

t_error ("t_alloc of t_bind structure failed");
exit (2)

;

)

bind->addr . len = sizeof (int)

;

* (int *) bind->addr . buf = SRV_ADDR;
bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0) {

t_error ("t_bind failed");
exit (3)

;

}

/*

* is the bound address correct?

*1

if (* (int *) bind->addr . buf != SRV_ADDR) {

fprintf (stderr, "t_bind bound wrong address\0)

;

exit (4)

;

}

if ((ud = (struct t_unitdata *) t_alloc (fd,

T_UNITDATA, T_ALL))
== NULL) {

t_error ("t_alloc of t_unitdata structure failed");
exit (5)

;

}

if ((uderr = (struct t_uderr *) t_alloc (fd,

T_UDERROR, T_ALL))
== NULL) (

t_error ("t_alloc of t_uderr structure failed");
exit (6)

;

}

4 sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 24

1

Read/Write Client The following code represents the connection-mode read/write client pro-

gram described in the A Read/Write Interface section. This client establishes a

transport connection with a server, and then uses cat(l) to retrieve the data sent

by the server and write it to its standard output. This client will communicate

with each of the connection-mode servers presented in the guide.

Revision A, of 27 March 1990

242 Transport-Level Programming

int fd;

int nbytes;
int flags = 0;

char buf{1024]

;

struct t_call *sndcall;
extern int t_errno;

if ((fd = t_open (
" /dev/tivc" , 0_RDWR, NULL)) < 0) {

t_error ("t_open failed");
exit (1)

;

}

if (t_bind (fd, NULL, NULL) < 0) {

t_error ("t_bind failed");
exit (2)

;

}

/*

* By assuming that the address is an integer value,

* this program may not run over another protocol.

*1

if ((sndcall = (struct t_call *) t_alloc (fd,

T_CALL, T_ADDR))
== NULL) {

t_error ("t_alloc failed");
exit (3)

;

1

sndcall->addr . len = sizeof(int);
* (int *) sndcall->addr .buf = SRV_ADDR;

if (t_connect (fd, sndcall, NULL) < 0) {

t_error ("t_connect failed for fd") ;

exit (4)

;

}

if (ioctl(fd, I_PUSH, "tirdwr") < 0) {

perror ("I_PUSH of tirdwr failed");
exit (5)

;

}

close (0) ;

dup (fd) ;

execl ("/bin/cat", "/bin/cat", 0);

perror ("execl of /bin/cat failed");
exit (6)

;

}

»sunV microsystems
Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 243

Event-Driven Server The following code represents the connection-mode server program described in

the Advanced Topics section. This server manages multiple connect indications

in an event-driven manner. Either connection-mode client presented earlier will

communicate with this server.

include <tiuser.h>
include <fcntl.h>
include <stdio.h>
include <poll.h>
include <stropts.h>
include <signal.h>

define NUM_FDS 1

define MAX_CONN_IND 4

define SRV_ADDR 1

int conn_fd;
extern int t errno;

/ * server's well known address * /

/ * server connection here * /

/ * holds connect indications * /

struct t_call *calls [NUM_FDS] [MAX_CONN_IND]

;

main ()

l

struct pollfd pollfds [NUM_FDS]

;

struct t_bind *bind;
int i;

I*

* Only opening and binding one transport endpoint,

* but more could be supported

*/

if ((pollfds [0] . fd = t_open ("/dev/tivc", 0_RDWR, NULL))
< 0) {

t_error ("t_open failed");
exit (1)

;

}

if ((bind = (struct t_bind *) t_alloc (pollfds [0]. fd,

T_BIND, T_ALL))
== NULL) {

t_error ("t_alloc of t_bind structure failed");
exit (2)

;

1

bind->qlen = MAX_CONN_IND;
bind->addr . len = sizeof(int);
* (int *) bind->addr.buf = SRV_ADDR;

if (t_bind (pollfds [0] . fd, bind, bind) < 0) {

t_error ("t_bind failed");
exit (3)

;

}

/*

XT microsystems
Revision A, of 27 March 1990

244 Transport-Level Programming

* Was the correct address bound?
*/

if (* (int *) bind->addr . buf != SRV_ADDR) {

fprintf (stderr, "t_bind bound wrong address\0)

;

exit (4)

;

}

pollfds [0]. events = POLLIN;

while (1) {

if (poll (pollfds, NUM_FDS, -1) < 0) {

perror ("poll failed");
exit (5)

;

}

for (i =0; i < NUM_FDS; i++) (

switch (pollfds [i] . revents) {

default

:

perror ("poll returned error event");
exit (6) ;

case 0:

continue;

case POLLIN:
do_event(i, pollfds [i] . fd)

;

service_conn_ind (i, pollfds[i] . fd)

;

do_event (slot, fd)

{

struct t_discon *discon;
int i ;

switch (t_look(fd)) {

default

:

fprintf (stderr, "t_look : unexpected event\0);
exit (7)

;

case T ERROR

:

fprintf (stderr, "t_look returned T_ERROR event\0);
exit (8)

;

case -1:

t_error ("t_look failed");
exit (9)

;

m sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 245

case 0:

/ * since POLLIN returned, this should not happen * /

fprintf (stderr, "t_look returned no event\0)

;

exit (10)

;

case T_LISTEN

:

I*

* findfree element in calls array

*1

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls [slot] [i] == NULL)
break;

}

if ((calls [slot] [i] = (struct t_call *) t_alloc (fd,

T_CALL, T_ALL))
== NULL)

1

t_error ("t_alloc of t_call structure failed");
exit (11)

;

}

if (t_listen (fd, calls [slot] [i]) < 0) {

t_error ("t_listen failed");
exit (12)

;

}

break;

case T_DISCONNECT:
discon = (struct t_discon *) t_alloc (fd,

T_DIS, T_ALL)

;

if (t_rcvdis (fd, discon) < 0) {

t_error ("t_rcvdis failed");
exit (13)

;

}

/*

* find call ind in array and delete it

*1

for (i = 0; i < MAX_CONN_IND; i++) {

if (discon->sequence ==

calls [slot] [i] ->sequence) {

t_free (calls [slot] [i] , T_CALL)

;

calls [slot] [i] = NULL;

}

}

t_free (discon, T_DIS)

;

break;

}

}

service_conn_ind (slot, fd)

{

« sun
microsystems

Revision A, of 27 March 1990

int i;

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls [slot] [i] == NULL)

continue;

if ((conn_fd = t_open ("/dev/tivc",
0_RDWR, NULL)) < 0) {

t_error ("open failed");
exit (14) ;

)

if (t_bind (conn_fd, NULL, NULL) < 0) {

t_error ("t_bind failed");
exit (15)

;

}

if (t_accept (fd, conn_fd, calls [slot] [i]) < 0) {

if (t_errno == TLOOK) {

t_close (conn_fd)

;

return;

}

t_error ("t_accept failed");
exit (16)

;

}

t_free (calls [slot] [i] , T_CALL)

;

calls [slot] [i] = NULL;

run_server (fd)

;

}

}

connrelease ()

{

/ * connJd is global because needed here * /

if (t_look (conn_fd) == T_DISCONNECT) {

fprintf (stderr, "connection aborted\0)

;

exit (12)

;

}

/ * else orderly release indication - normal exit * /

exit (0)

;

}

run_server (listen_fd)
int listen_fd;

{

int nbytes;
FILE *logfp; /* file pointer to log file */

char buf [1024] ;

switch (fork ()) {

m sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 247

case -1:

perror("fork failed");
exit (20)

;

default: /* parent */

/ * close connJd and then go up and listen again * /

if (t_close (conn_fd) < 0) {

t_error ("t_close failed for conn_fd")

;

exit (21)

;

1

return;

case 0: /* child */

/ * close listenJd and do service * /

if (t_close (listen_fd) < 0) {

t_error ("t_close failed for listen_fd")

;

exit (22) ;

)

if ((logfp = fopen ("logfile", "r"))
== NULL) {

perror ("cannot open logfile");
exit (23)

;

1

signal (SIGPOLL, connrelease)

;

if (ioctl (conn_fd, I_SETSIG, S_INPUT) < 0) {

perror ("ioctl I_SETSIG failed");
exit (24)

;

1

if (t_look (conn_fd) != 0) { /* disconnect already there? */

fprintf (stderr, "t_look: unexpected event\0);
exit (25)

;

}

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)

if (t_snd (conn_fd, buf, nbytes, 0) < 0) {

t_error ("t_snd failed");
exit (26)

;

}

if (t_sndrel (conn_fd) < 0) {

t_error ("t_sndrel failed");
exit (27)

;

1

pause () ; /* until orderly release indication arrives */

1

}

microsystems
Revision A, of 27 March 1990

248 Transport-Level Programming

9. lie Glossary The following terms apply to the Transport Interface:

Abortive release

An abrupt termination of a transport connection, which may result in the loss

of data.

Asynchronous execution

The mode of execution in which Transport Interface routines will never

block while waiting for specific asynchronous events to occur, but instead

will return immediately if the event is not pending.

Client

The transport user in connection-mode that initiates the establishment of a

transport connection.

Connection establishment

The phase in connection-mode that enables two transport users to create a

transport connection between them.

Connection-mode

A circuit-oriented mode of transfer in which data are passed from one user to

another over an established connection in a reliable, sequenced manner.

Connectionless-mode

A mode of transfer in which data are passed from one user to another in

self-contained units with no logical relationship required among multiple

units.

Connection release

The phase in connection-mode that terminates a previously established tran-

sport connection between two users.

Datagram

A unit of data transferred between two users of the connectionless-mode ser-

vice.

Data transfer

The phase in connection-mode or connectionless-mode that supports the

transfer of data between two transport users.

Expedited data

Data that are considered urgent. The specific semantics of expedited data

are defined by the transport protocol that provides the transport service.

Expedited transport service data

The amount of expedited user data the identity of which is preserved from

one end of a transport connection to the other (that is, an expedited mes-

sage).

Local management

The phase in either connection-mode or connectionless-mode in which a

transport user establishes a transport endpoint and binds a transport address

to the endpoint. Functions in this phase perform local operations, and

require no transport layer traffic over the network.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 9— Transport Level Interface Programming 249

Orderly release

A procedure for gracefully terminating a transport connection with no loss of

data.

Peer user

The user with whom a given user is communicating above the Transport

Interface.

Server

The transport user in connection-mode that offers services to other users

(clients) and enables these clients to establish a transport connection to it.

Service indication

The notification of a pending event generated by the provider to a user of a

particular service.

Service primitive

The unit of information passed across a service interface that contains either

a service request or service indication.

Service request

A request for some action generated by a user to the provider of a particular

service.

Synchronous execution

The mode of execution in which Transport Interface routines may block

while waiting for specific asynchronous events to occur.

Transport address

The identifier used to differentiate and locate specific transport endpoints in

a network.

Transport connection

The communication circuit that is established between two transport users in

connection-mode.

Transport endpoint

The local communication channel between a transport user and a transport

provider.

Transport Interface

The library routines and state transition rules that support the services of a

transport protocol.

Transportprovider

The transport protocol that provides the services of the Transport Interface.

Transport service data unit

The amount of user data whose identity is preserved from one end of a tran-

sport connection to the other (that is, a message).

Transport user

The user-level application or protocol that accesses the services of the Tran-

sport Interface.

Revision A, of 27 March 1990

250 Transport-Level Programming

Virtual circuit

A transport connection established in connection-mode. The following acro-

nyms are used throughout this guide:

CLTS
Connectionless Transport Service

COTS
Connection Oriented Transport Service

ETSDU
Expedited Transport Service Data Unit

TSDU
Transport Service Data Unit

#sun
microsystems

Revision A, of 27 March 1990

10

A Socket-Based Interprocess

Communications Tutorial

WARNING Socket-based interprocess communication (IPC), while still supported, is no

longer the preferredframeworkfor transport-levelprogramming. Socket-

based IPC has been superceded as the “standard” method ofaccessing network

protocols by a set ofOSI-compatible transport mechanisms based upon

STREAMS and accessed by way ofa Transport Library Interface (TLI). For

details on the TLI, see the previous chapter, Transport Level Interface Pro-

gramming.

If you are building a new network application that requires direct access to tran-

sport facilities, use the TLI mechanisms. If you do not require such direct access,

Remote Procedure Calls (RPC) are the preferred programming framework— see

the Remote Procedure Call Programming Guide section of this manual for

details. New programs should not be based on sockets.

Various approaches are possible within the socket paradigm; this manual

discusses them, and then illustrates them by way a series of example programs.

These programs demonstrate in a simple way the use of pipes, socketpairs, and

the use of datagram socket and stream socket communication.

NOTE Unlike RPC-based networking (which presumes XDR) socket-based IPC does not

contain a mechanismfor ensuring architecture independent code. Socket-based

programs must make judicious use of the host-to-network byte-order conversion

macros described in byteorder (3N) if they are to be portable.

The intent of this chapter is to present a few simple example programs, not to

describe the socket-based networking facilities in full. For more information, see

the next chapter. An Advanced Socket-Based Interprocess Communications

Tutorial.

10.1. Goals Facilities for interprocess communication (IPC) and networking were a major

addition to the UNIX system— first introduced in 4.2BSD. These facilities

required major additions and some changes to the system interface. The basic

idea of this interface is to make IPC similar to file I/O. In the UNIX system a

process has a set of I/O descriptors, from which one reads and to which one

writes. Descriptors may refer to normal files, to devices (including terminals), or

to communication channels. The use of a descriptor has three phases: creation,

use for reading and writing, and destruction. By using descriptors to write files,

rather than simply naming the target file in the write call, one gains a surprising

microsystems

251 Revision A, of 27 March 1990

252 Transport-Level Programming

amount of flexibility. Often, the program that creates a descriptor will be dif-

ferent from the program that uses the descriptor. For example the shell can

create a descriptor for the output of the Is command that will cause the listing to

appear in a file rather than on a terminal. Pipes are another form of descriptor

that have been used in the UNIX system for some time. Pipes allow one-way

data transmission from one process to another, the two processes and the pipe

must be set up by a common ancestor.

The use of descriptors is not the only communication interface provided by the

UNIX system. The signal mechanism sends a tiny amount of information from

one process to another. The signaled process receives only the signal type, not

the identity of the sender, and the number of possible signals is small. The signal

semantics limit the flexibility of the signaling mechanism as a means of interpro-

cess communication.

The identification of IPC with I/O is quite longstanding in the UNIX system and

has proved quite successful. At first, however, IPC was limited to processes

communicating within a single machine. With 4.2BSD this expanded to include

IPC between machines. This expansion has necessitated some change in the way
that descriptors are created. Additionally, new possibilities for the meaning of

read and write have been admitted. Originally the meanings, or semantics, of

these terms were fairly simple. When you wrote something it was delivered.

When you read something, you were blocked until the data arrived. Other possi-

bilities exist, however. One can write without full assurance of delivery if one

can check later to catch occasional failures. Messages can be kept as discrete

units or merged into a stream. One can ask to read, but insist on not waiting if

nothing is immediately available. These new possibilities were implemented in

4.3BSD and then incorporated into SunOS.

Socket-based IPC offers several choices. This chapter presents simple examples

that illustrate some of them. The reader is presumed to be familiar with the C
programming language, but not necessarily with UNIX system calls or processes

and interprocess communication. The chapter reviews the notion of a process

and the types of communication that are supported by the socket abstraction. A
series of examples are presented that create processes that communicate with one

another. The programs show different ways of establishing channels of commun-
ication. Finally, the calls that actually transfer data are reviewed. To clearly

present how communication can take place, the example programs have been

cleared of anything that might be construed as useful work. They can serve as

models for the programmer trying to construct programs that are composed of

cooperating processes.

10.2. Processes A process can be thought of as a single line of control in a program. Programs

can have a point where control splits into two independent lines, an action called

forking. In the UNIX system these lines can never join again. A call to the sys-

tem routine fork () causes a process to split in this way. The result of this call

is that two independent processes will be running, executing exactly the same
code. Memory values will be the same for all values set before the fork, but, sub-

sequently, each version will be able to change only the value of its own copy of

each variable. Initially, the only difference between the two will be the value

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 253

10.3. Pipes

returned by f ork(). The parent will receive a process id for the child, the child

will receive a zero. Calls to fork () typically precede, or are included in, an if-

statement.

A process views the rest of the system through a private table of descriptors. The

descriptors can represent open files or sockets (sockets are the endpoints of com-

munications channels, as discussed below). Descriptors are referred to by their

index numbers in the table. The first three descriptors are often known by special

names, stdin, stdout, and stderr. These are the standard input, output, and error.

When a process forks, its descriptor table is copied to the child. Thus, if the

parent’s standard input is being taken from a terminal (devices are also treated as

files in the UNIX system), the child’s input will be taken from the same terminal.

Whoever reads first will get the input. If, before forking, the parent changes its

standard input so that it is reading from a new file, the child will take its input

from the new file. It is also possible to take input from a socket, rather than from

a file.

Most users of the UNIX system know that they can pipe the output of a program

progl, to the input of another, prog2, by typing the command

example# progl
|
prog2

This is called “piping” the output of one program to another because the mechan-

ism used to transfer the output is called a pipe. When the user types a command,

the command is read by the shell, which decides how to execute it. If the com-

mand is simple, for example,

example# progl

the shell forks a process, which executes the program, progl, and then dies.

The shell waits for this termination and then prompts for the next command. If

the command is a compound command,

example# progl
|
prog2

the shell creates two processes connected by a pipe. One process runs the pro-

gram, progl, the other runs prog2, The pipe is an I/O mechanism with two

ends. Data that is written into one end can be read from the other.

Since a program specifies its input and output only by the descriptor table

indices, the input source and output destination can be changed without changing

the text of the program. It is in this way that the shell is able to set up pipes.

Before executing progl, the process can close whatever is at stdout and replace

it with one end of a pipe. Similarly, the process that will execute prog2 can

substitute the opposite end of the pipe for stdin.

Now let’s examine a program that creates a pipe for communication between its

child and itself. A pipe is created by a parent process, which then forks. When a

process forks, the parent’s descriptor table is copied into the child’s.

Figure 10-1 Use ofa Pipe—
include <stdio.h>

\ /

A sun
microsystems

Revision A, of 27 March 1990

254 Transport-Level Programming

#define DATA "Bright star, would I . .
.

"

/*

* This program creates a pipe, thenforks. The child communicates to the

* parent over the pipe. Notice that a pipe is a one-way communications
* device. I can write to the output socket (socket s [1] , the second
* socket of the array returned by pipe) and readfrom the input
* socket (socket s [0]), but not vice versa.

*/

main (

)

{

int sockets [2], child;

/* Create a pipe */

if (pipe (sockets) < 0) {

perror ("opening stream socket pair")

;

exit (10);

}

if ((child = fork()) == -1)

perror ("fork")

;

else if (child) {

char buf [1024]

;

/* This is still the parent. It reads the child' s message. */

close (sockets [1]) ;

if (read(sockets [0]

,

buf, 1024) < 0)

perror ("reading message");
printf("—>%s\n", buf);
close (sockets [0])

;

) else {

/ * This is the child. It writes a message to its parent. * /

close (sockets [0])

;

if (write (sockets [1] , DATA, sizeof (DATA)) < 0)

perror ("writing message");
close (sockets [1])

;

}

exit (0) ;

}

Here the parent process makes a call to the system routine pipe(). This routine

creates a pipe and places descriptors for the sockets for the two ends of the pipe

in the process’s descriptor table. pipe(). is passed an array into which it places

the index numbers of the sockets it creates. The two ends are not equivalent.

The socket whose index is returned in the first word of the array is opened for

reading only, while the socket in the second word is opened only for writing.

This corresponds to the fact that the standard input is the first descriptor of a

process’s descriptor table and the standard output is the second. After creating

the pipe, the parent creates the child with which it will share the pipe by calling

fork().

microsystems
Revision A, of 27 March 1990

Chapter 10—A Socket-Based Interprocess Communications Tutorial 255

The following figure illustrates the effect of such a call to fork(). The parent

process’s descriptor table points to both ends of the pipe. After the fork, both

parent’s and child’s descriptor tables point to the pipe. The child can then use

the pipe to send a message to the parent.

Figure 10-2 Sharing a Pipe between Parent and Child

Parent

Parent Child

Just what is a pipe? It is a one-way communication mechanism, with one end

opened for reading and the other end for writing. Therefore, parent and child

need to agree on which way to turn the pipe, from parent to child or the other

way around. Using the same pipe for communication both from parent to child

and from child to parent would be possible (since both processes have references

to both ends), but very complicated. If the parent and child are to have a two-

way conversation, the parent creates two pipes, one for use in each direction. (In

accordance with their plans, both parent and child in the example above close the

socket that they will not use. It is not required that unused descriptors be closed,

but it is good practice.) A pipe is also a stream communication mechanism; that

Revision A, of 27 March 1990

256 Transport-Level Programming

is, all messages sent through the pipe are placed in order and reliably delivered.

When the reader asks for a certain number of bytes from this stream, it is given

as many bytes as are available, up to the amount of the request. Note that these

bytes may have come from the same call to write () or from several calls to

write () that were concatenated.

10.4. Socketpairs SunOS provides a slight generalization of pipes. A pipe is now a pair of con-
nected sockets for one-way stream communication. One may obtain a pair of

connected sockets for two-way stream communication by calling the routine

socketpairO- The program in figure 10-3, below, calls socketpair () to

create such a connection. The program uses the link for communication in both

directions. Since socketpairs are an extension of pipes, their use resembles that

of pipes. Figure 10-4 illustrates the result of a fork following a call to socket-
pairO.

socketpair () takes as arguments a specification of a communication
domain, a style of communication, and a protocol. These are the parameters

shown in the example. Domains and protocols will be discussed in the next sec-

tion. Briefly, a domain specifies a socket name space and implies a set of con-

ventions for manipulating socket names. Currently, socketpairs have only been
implemented for the UNIX domain. The UNIX domain uses UNIX path names
for naming sockets. It only allows communication between sockets on the same
machine.

Note that the header files <sys/socket . h> and <sys/types .h> . are

required in this program. The constants AF_UNIX and SOCK_STREAM are

defined in <sys/socket

.

h>, which in turn requires the file

<sys /types .h> for some of its definitions.

Figure 10-3 Use ofa Socketpair

include <sys/types . h>
include <sys/socket . h>
include <stdio.h>

define DATA1 "In Xanadu, did Kublai Khan ..."
define DATA2 "A stately pleasure dome decree . .

.

"

I*

* This program creates a pair of connected sockets thenforks and
* communicates over them. This is very similar to communication with pipes,
* however, socketpairs are two-way communications objects. Therefore I can
* send messages in both directions.

*1

main (

)

1

int sockets [2], child;
char buf [1024] ;

if (socketpair (AF_UNIX, SOCK_STREAM, 0, sockets) < 0) {

sun
microsystems

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 257

Figure 10-4 Sharing a Socketpair between Parent and Child

Revision A, of 27 March 1990

258 Transport-Level Programming

Pa rent

10.5. Domains and Pipes and socketpairs are a simple solution for communicating between a parent

Protocols and child or between child processes. What if we wanted to communicate
between processes that have no common ancestor. Neither standard UNIX pipes

nor socketpairs are the answer here, since both mechanisms require a common
ancestor to set up the communication. We would like to have two processes

separately create sockets and then have messages sent between them. This is

often the case when providing or using a service in the system. This is also the

case when the communicating processes are on separate machines.

Sockets created by different programs use names to refer to one another; names
generally must be translated into addresses for use. The space from which an

address is specified by a domain. There are several such domains for sockets.

Two that will be used in the examples here are the UNIX domain (or AF_UNIX,
for Address Format UNIX) and the Internet domain (or AF_INET). In the UNIX
domain, a socket is given a path name within the file system name space. A file

system node is created for the socket and other processes may then refer to it by

^sun
microsystems

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 259

giving its pathname. UNIX domain names, thus, allow communication between

any two processes that reside on the same machine and that are able to access the

socket pathnames. The Internet domain is the UNIX implementation of the

DARPA Internet standard protocols IP/TCP/UDP. Addresses in the Internet

domain consist of a machine network address and an identifying number, called a

port. Internet domain names allow communication between separate machines.

Communication follows some particular “style.” Currently, communication is

either through a stream socket or by datagram. Stream communication implies a

connection. The communication is reliable, error-free, and, as in pipes, no mes-

sage boundaries are kept Reading from a stream may result in reading the data

sent from one or several calls to write () or only part of the data from a single

call, if there is not enough room for the entire message, or if not all the data from

a large message has been transferred. The protocol implementing such a style

will retransmit messages received with errors. It will also return error messages

if one tries to send a message after the connection has been broken. Datagram

communication does not use connections. Each message is addressed individu-

ally. If the address is correct, it will generally be received, although this is not

guaranteed. Often datagrams are used for requests that require a response from

the recipient. If no response arrives in a reasonable amount of time, the request

is repeated. The individual datagrams will be kept separate when they are read,

that is, message boundaries are preserved.

NOTE Sockets under TU Emulation: writef) shouldfail with errno set to

ENOTCONN if it is used on an unconnected socket, however, under TU emula-

tion, it will instead return success. Likewise, writef) shouldfail with errno
set to EPIPE ifa connection is broken, but instead it will return with errno set

to ENXIO. Similarly, readfj shouldfail with errno set to ENOTCONN if it is

used on an unconnected socket, but instead it will return success, with zero bytes

read. In all of these cases, however, so_error will be correctly set. Along the

same lines, writefj, should allow zero length data messages on the internet

UDP transport. This will not be the case. If it is attempted, writefj will return

-1 with errno set to ERANGE. These incompatibilities are considered very

minor. Note that calling sendfj, sendtofj or sendmsgfj on a CLTS network

will succeed.

The difference in performance between the two styles of communication is gen-

erally less important than the difference in semantics. The performance gain that

one might find in using datagrams must be weighed against the increased com-

plexity of the program, which must now concern itself with lost or out of order

messages. If lost messages may simply be ignored, the quantity of traffic may be

a consideration. The expense of setting up a connection is best justified by fre-

quent use of the connection. Since the performance of a protocol changes as it is

tuned for different situations, it is best to seek the most up-to-date information

when making choices for a program in which performance is crucial.

A protocol is a set of rules, data formats, and conventions that regulate the

transfer of data between participants in the communication. In general, there is

one protocol for each socket type (stream, datagram, etc.) within each domain.

The code that implements a protocol keeps track of the names that are bound to

sockets, sets up connections, and transfers data between sockets, perhaps sending

®sun
microsystems

Revision A, of 27 March 1990

260 Transport-Level Programming

the data across a network. This code also keeps track of the names that are

bound to sockets. It is possible for several protocols, differing only in low level

details, to implement the same style of communication within a particular

domain. Although it is possible to select which protocol should be used, for

nearly all uses it is sufficient to request the default protocol. This has been done

in all of the example programs.

One specifies the domain, style and protocol of a socket when it is created. For

example, in figure 10-6 the call to socket () causes the creation of a datagram

socket with the default protocol in the UNIX domain.

10.6. Datagrams in the Let us now look at two programs that create sockets separately. The programs in

UNIX Domain Figures 10-5 and 10-6 use datagram communication rather than a stream. The
structure used to name UNIX domain sockets is defined in the file

<sys/un

.

h>. The definition has also been included in the example for clarity.

Each program creates a socket with a call to socket(). These sockets are in the

UNIX domain. Once a name has been decided upon it is attached to a socket by
the system call bind(). The program in Figure 10-5 uses the name “socket”,

which it binds to its socket. This name will appear in the working directory of

the program. The routines in Figure 10-6, use the socket only for sending mes-

sages. They do not create a name for the socket because no other process has to

refer to it.

Figure 10-5 Reading UNIX Domain Datagrams

include <sys/types . h>
include <sys/socket . h>
include <sys/un.h>
include <stdio.h>

/*

* The include file <sys/un . h> defines sockaddr_un asfollows:
* struct sockaddr_un {

* short sun_family;
* char sun_jpath [108]

;

*
} ;

*/

define NAME "socket"

/*

* This program creates a UNIX domain datagram socket, binds a name to it,

* then readsfrom the socket.

*/

main (

)

{

int sock, length;
struct sockaddr_un name;
char buf [1024]

;

/ * Create socketfrom which to read

.

* /

sun
microsystems

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 26

1

sock = socket (AF_UNIX, SOCK_DGRAM, 0)

;

if (sock < 0) {

perror ("opening datagram socket");
exit (1)

;

}

/ * Create name

.

* /

name . sun_fami ly = AF_UNIX;
strcpy (name . sun_path, NAME);
if (bind(sock, (struct sockaddr *)&name,

strlen (NAME) +3) < 0) {

perror ("binding name to datagram socket");
exit (1) ;

}

printf ("socket —>%s\n", NAME)

;

/ * Readfrom the socket

.

* /

if (read(sock, buf, 1024) < 0)

perror ("receiving datagram packet");
printf ("—>%s\n", buf);
close (sock)

;

unlink (NAME)

;

exit (0)

;

Note that, in the call to bind () above, the &name parameter is cast to a

(struct sockaddr *) . In writing networking code, one invariably has to

cast such address arguments to network-related system calls, since the system-

call routines must be able to handle a variety of address formats, yet each indivi-

dual call will use a specialization of the general format. It is poor programming

style to omit these casts, a fact which lint will be only to glad to remind you

of.

Figure 10-6 Sending a UNIX Domain Datagrams—
include <sys/types . h>
include <sys/socket . h>
include <sys/un.h>
include <stdio.h>

define DATA "The sea is calm, the tide is full ..."

/*

* Here I send a datagram to a receiver whose name I getfrom the command
* line arguments. Theform ofthe command line is udgramsend pathname.
*1

main(argc, argv)

int argc;

char *argv []

;

{

int sock;
struct sockaddr_un name;

v ,

w sun
Xr microsystems

Revision A, of 27 March 1990

/ * Create socket on which to send . * /

sock = socket (AF_UNIX, SOCK_DGRAM, 0);

if (sock < 0) {

perror ("opening datagram socket");
exit (1) ;

}

/ * Construct name ofsocket to send to. * /

name . sun_family = AF_UNIX;
strcpy (name. sun_path, argv[l]);

/ * Send message .
* /

if (sendto (sock, DATA, sizeof (DATA) , 0,

(struct sockaddr *) Sname,
sizeof (struct sockaddr_un)) < 0) {

perror ("sending datagram message");

}

close (sock)

;

exit (0) ;

}

V

Names in the UNIX domain are path names. Like file path names they may be

either absolute (e.g. “/dev/imaginary”) or relative (e.g. “socket”). Because these

names are used to allow processes to rendezvous, relative path names can pose

difficulties and should be used with care. When a name is bound into the name

space, a file (vnode) is allocated in the file system. If the vnode is not deallo-

cated, the name will continue to exist even after the bound socket is closed. This

can cause subsequent runs of a program to find that a name is unavailable, and

can cause directories to fill up with these objects. The names are removed by

calling unlink () or using the rm (1) command. Names in the UNIX domain

are only used for rendezvous. They are not used for message delivery once a

connection is established. Therefore, in contrast with the Internet domain,

unbound sockets need not be (and are not) automatically given addresses when
they are connected.

There is no established means of communicating names to interested parties. In

the example, the program in Figure 10-6 gets the name of the socket to which it

will send its message through its command line arguments. Once a line of com-

munication has been created, one can send the names of additional, perhaps new,

sockets over the link.

n
microsystems

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 263

10.7. Datagrams in the

Internet Domain

Figure 10-7 Reading Internet Domain Datagrams

tinclude <sys/types.h>
#include <sys/socket . h>

#include <netinet/in.h>
#include <stdio.h>

I*

* The include file <netinet/in . h> defines sockaddr_in asfollows:

* struct sockaddr_in {

* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8];
*

}

;

*

* This program creates a datagram socket, binds a name to it, then reads

* from the socket.

*1

main (

)

1

int sock, length;
struct sockaddr_in name;

char buf [1024]

;

/ * Create socketfrom which to read

.

* /

sock = socket (AF_INET, SOCK_DGRAM, 0)

;

if (sock < 0) {

perror ("opening datagram socket");
exit (1)

;

}

/ * Create name with wildcards . * /

name . sin_family = AF_INET;
name . sin_addr . s_addr = INADDR_ANY;
name . sin_j?ort = 0;

if (bind(sock, (struct sockaddr *) Sname,
sizeof name) < 0) {

perror ("binding datagram socket");
exit (1)

;

}

/ * Find assigned port value and print it out .
* /

length = sizeof (name)

;

if (getsockname (sock, (struct sockaddr *) Sname,

Slength) < 0) {

perror ("getting socket name")

;

exit (1)

;

}

printf ("Socket port #%d\n", ntohs (name . sin_port))

;

/ * Readfrom the socket

.

* /

sun
microsystems

Revision A, of 27 March 1990

264 Transport-Level Programming

if (read(sock, buf, 1024) < 0)

perror ("receiving datagram packet");
printf("—>%s\n", buf);
close (sock)

;

exit (0)

;

}

\

The examples in Figure 10-7 and 10-8 are very close to the previous examples

except that the socket is in the Internet domain. The structure of Internet domain

addresses is defined in the file <netinet/in . h>. Internet addresses specify a

host address (a 32-bit number) and a delivery slot, or port, on that machine.

These ports are managed by the system routines that implement a particular pro-

tocol. Unlike UNIX domain names, Internet socket names are not entered into

the file system and, therefore, they do not have to be unlinked after the socket has

been closed. When a message must be sent between machines it is sent to the

protocol routine on the destination machine, which interprets the address to

determine to which socket the message should be delivered. Several different

protocols may be active on the same machine, but, in general, they will not com-

municate with one another. As a result, different protocols are allowed to use the

same port numbers. Thus, implicitly, an Internet address is a triple including a

protocol as well as the port and machine address. An association is a temporary

or permanent specification of a pair of communicating sockets. An association is

thus identified by the tuple <protocol, local machine address, local port, remote

machine address, remote port>. An association may be transient when using

datagram sockets; the association actually exists during a send () operation.

Figure 10-8 Sending an Internet Domain Datagram

include
include
include
include
include

<sys/types.h>
<sys/socket .h>

<netinet/in.h>
<netdb.h>
<stdio . h>

define DATA "The sea is calm, the tide is full .
II

/*

* Here I send a datagram to a receiver whose name I getfrom the command
* line arguments. Theform of the command line is:

* dgramsend hostname portnumber
*/

main(argc, argv)

int argc;

char *argv[];

{

int sock;
struct sockaddr_in name;
struct hostent *hp, *gethostbyname ()

;

sun
microsystems

Revision A, of 27 March 1990

Chapter 10—A Socket-Based Interprocess Communications Tutorial 265

/ * Create socket on which to send

.

* /

sock = socket (AF_INET, SOCK_DGRAM, 0);

if (sock < 0) {

perror ("opening datagram socket");
exit (1)

;

}

I*

* Construct name, with no wildcards, of the socket to send to.

* gethostbyname returns a structure including the network address

* of the specified host. The port number is takenfrom the command
* line.

*1

hp = gethostbyname (argv [1])

;

if (hp == 0) {

fprintf (stderr, "%s: unknown hostO, argv[l]);
exit (2)

;

}

bcopy((char *) hp->h_addr, (char *) Sname . sin_addr,
hp->h_length) ;

name . sin_family = AF_INET;
name . sin_port = htons (atoi (argv [2]))

;

/ * Send message

.

* /

if (sendto (sock, DATA, sizeof DATA
, 0,

(struct sockaddr *) Sname, sizeof name) < 0)

perror ("sending datagram message");
close (sock)

;

exit (0) ;

The protocol for a socket is chosen when the socket is created. The local

machine address for a socket can be any valid network address of the machine, if

it has more than one, or it can be the wildcard value INADDR_ANY. The wild-

card value is used in the program in Figure 10-7. If a machine has several net-

work addresses, it is likely that messages sent to any of the addresses should be

deliverable to a socket. This will be the case if the wildcard value has been

chosen. Note that even if the wildcard value is chosen, a program sending mes-

sages to the named socket must specify a valid network address. One can be wil-

ling to receive from “anywhere,” but one cannot send a message “anywhere.”

The program in Figure 10-8 is given the destination host name as a command
line argument. To determine a network address to which it can send the mes-

sage, it looks up the host address by the call to gethostbyname(). The
returned structure includes the host’s network address, which is copied into the

structure specifying the destination of the message.

The port number can be thought of as the number of a mailbox, into which the

protocol places one’s messages. Certain daemons, offering certain advertised

services, have reserved or “well-known” port numbers. These fall in the range

from 1 to 1023. Higher numbers are available to general users. Only servers

need to ask for a particular number. The system will assign an unused port

number when an address is bound to a socket. This may happen when an explicit

bind () call is made with a port number of 0, or when a connect () or

microsystems
Revision A, of 27 March 1990

266 Transport-Level Programming

send () is performed on an unbound socket. Note that port numbers are not

automatically reported back to the user. After calling bind(), asking for port 0,

one may call get sockname () to discover what port was actually assigned.

The routine get sockname () will not work for names in the UNIX domain.

NOTE Sockets under TLI Emulation: get socknamef) can only work if the underlying

transportprovider provides the necessary support, and under the TLI, this is not

always true. Specifically, if the address given to bindfj was INADDR_ANY, the

the socket module will not be able to map backfrom its real network address to

its local name. This is only a minor problem.

The format of the socket address is specified in part by standards within the Inter-

net domain. The specification includes the order of the bytes in the address.

Because machines differ in the internal representation they ordinarily use to

represent integers, printing out the port number as returned by getsockname may
result in a misinterpretation. To print out the number, it is necessary to use the

routine ntohs ()
(for network to host: short) to convert the number from the

network representation to the host’s representation. On some machines, such as

68000-based machines, this is a null operation. On others, such as VAXes, this

results in a swapping of bytes. Another routine exists to convert a short integer

from the host format to the network format, called htons(); similar routines

exist for long integers. For further information, see byteorder (3)

.

10.8. Connections To send data between stream sockets (having communication style

SOCK_STREAM), the sockets must be connected. Figures 10-9 and 10-10 show
two programs that create such a connection. The program in 10-9 is relatively

simple. To initiate a connection, this program simply creates a stream socket,

then calls connectO. specifying the address of the socket to which it wishes its

socket connected. Provided that the target socket exists and is prepared to handle

a connection, connection will be complete, and the program can begin to send

messages. Messages will be delivered in order without message boundaries, as

with pipes. The connection is destroyed when either socket is closed (or soon

thereafter). If a process persists in sending messages after the connection is

closed, a SIGPIPE signal is sent to the process by the operating system. Unless

explicit action is taken to handle the signal (see the signal (3) or

sigvec (3) man pages) the process will terminate.

Figure 10-9 Initiating an Internet Domain Stream Connection

include
include
include
include
include

<sys/types . h>
<sys/socket . h>
<netinet/in . h>
<netdb . h>
<stdio . h>

define DATA "Half a league, half a league ..."

/*

* This program creates a socket and initiates a connection with the socket

* given in the command line. One message is sent over the connection and
* then the socket is closed, ending the connection. Theform of the command

microsystems
Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 267

* line is: streamwrite hostname portnumber
*/

main(argc, argv)

int argc;

char *argv[];

{

int sock;

struct sockaddr_in server;
struct hostent *hp, *gethostbyname ()

;

char buf [1024]

;

/* Create socket

.

*/

sock = socket (AF_INET, SOCK_STREAM, 0);

if (sock < 0) {

perror ("opening stream socket");
exit (1)

;

}

/ * Connect socket using name specified, by command line . * /

server . sin_family = AF_INET;
hp = gethostbyname (argv [1]) ;

if (hp == 0) {

fprintf (stderr, "%s: unknown hostO, argv[l]);
exit (2) ;

)

bcopy((char *) hp->h_addr, (char *) Sserver . sin_addr,
hp->h_length)

;

server . sin_port = htons (atoi (argv [2]))

;

if (connect (sock,

(struct sockaddr *) Sserver, sizeof server) < 0) {

perror ("connecting stream socket");
exit (1) ;

}

if (write (sock, DATA, sizeof DATA) < 0)

perror ("writing on stream socket");
close (sock) ;

exit (0) ;

}

v

Forming a connection is asymmetrical; one process, such as the program in Fig-

ure 10-9 requests a connection with a particular socket, the other process accepts

connection requests. Before a connection can be accepted a socket must be

created and an address bound to it. This situation is illustrated in the top half of

Figure 10-12 . Process 2 has created a socket and bound a port number to it. Pro-

cess 1 has created an unnamed socket. The address bound to process 2’s socket

is then made known to process 1 and, perhaps to several other potential commun-
icants as well. If there are several possible communicants, this one socket might

receive several requests for connections. As a result, a new socket is created for

each connection. This new socket is the endpoint for communication within this

process for this connection. A connection may be destroyed by closing the

®sun
microsystems

Revision A, of 27 March 1990

268 Transport-Level Programming

corresponding socket.

The program in Figure 10-10 is a rather trivial example of a server. It creates a

socket to which it binds a name, which it then advertises. (In this case it prints

out the socket number.) The program then calls listen () for this socket.

Since several clients may attempt to connect more or less simultaneously, a

queue of pending connections is maintained in the system address space,

listen () marks the socket as willing to accept connections and initializes the

queue. When a connection is requested, it is listed in the queue. If the queue is

full, an error status may be returned to the requester. The maximum length of

this queue is specified by the second argument of listen(); the maximum
length is limited by the system. Once the listen call has been completed, the pro-

gram enters an infinite loop. On each pass through the loop, a new connection is

accepted and removed from the queue, and, hence, a new socket for the connec-

tion is created. The bottom half of Figure 10-12 shows the result of Process 1

connecting with the named socket of Process 2, and Process 2 accepting the con-

nection. After the connection is created, the service, in this case printing out the

messages, is performed and the connection socket closed. The accept () call

will take a pending connection request from the queue if one is available, or

block waiting for a request. Messages are read from the connection socket.

Reads from an active connection will normally block until data is available. The

number of bytes read is returned. When a connection is destroyed, the read call

returns immediately. The number of bytes returned will be zero.

NOTE Sockets under TU Emulation: listenf) has a unfortunate failure condition

under TLJ emulation. The problem is rooted in the difference between TLI and

socket semantics which creates a timing window within which a second transport

user can be allocated the address previously allocated to the caller of

listenf). If this happens, the socket library will return -1, and errno will be

set to EADDRINUSE, an error not usually possible in sockets. Also note that,

both readf) and writef) should return with errno set to ENOCONN when

used on an unconnected socket. Under the socket emulation, however, they will

return success (read()will also report zero bytes read). so_error will still

be properly set, so these incompatibilities are very minor.

The program in Figure 10-11 is a slight variation on the server in Figure 10-10.

It avoids blocking when there are no pending connection requests by calling

select () to check for pending requests before calling accept(). This stra-

tegy is useful when connections may be received on more than one socket, or

when data may arrive on other connected sockets before another connection

request.

The programs in Figures 10-13 and 10-14 show a program using stream socket

communication in the UNIX domain. Streams in the UNIX domain can be used

for this sort of program in exactly the same way as Internet domain streams,

except for the form of the names and the restriction of the connections to a

machine. There are some differences, however, in the functionality of streams in

the two domains, notably in the handling of out-of-band data (discussed briefly

below). These differences are beyond the scope of this chapter.

Figure 10-10 Accepting an Internet Domain Stream Connection

microsystems
Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 269

#include <sys /types . h>
include <sys/socket . h>
include <netinet/in.h>
#include <netdb.h>
include <stdio.h>
define TRUE 1

* This program creates a socket and then begins an infinite loop. Each time

* through the loop it accepts a connection and prints out messagesfrom it.

* When the connection breaks, or a termination message comes through, the

* program accepts a new connection.

*/

main (

)

{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;

int i;

/* Create socket . */

sock = socket (AF_INET, SOCK_STREAM, 0);
if (sock < 0) {

perror ("opening stream socket");
exit (1)

;

}

/ * Name socket using wildcards .
* /

server . sin_family = AF_INET;
server . sin_addr. s_addr = INADDR_ANY

;

server . sin_port = 0;

if (bind(sock, (struct sockaddr *)&server,
sizeof server) < 0) {

perror ("binding stream socket");
exit (1)

;

)

/ * Find out assigned port number and print it out. * /

length = sizeof server;
if (getsockname (sock, (struct sockaddr *)&server,

&length) < 0) {

perror ("getting socket name")

;

exit (1)

;

}

printf ("Socket port #%d\n", ntohs (server . sin_port))

;

/ * Start accepting connections

.

* /

listen (sock, 5);

do {

msgsock = accept (sock,

(struct sockaddr *)0, (int *)0);
if (msgsock - -1)

« sun
microsystems

Revision A, of 27 March 1990

270 Transport-Level Programming

Figure 10-11

perror ("accept")

;

else do {

bzero(buf, sizeof buf);

if ((rval = read (msgsock, buf, 1024)) < 0)

perror ("reading stream message");
i = 0;

if (rval == 0)

printf ("Ending connection\n")

;

else
printf ("—>%s\n", buf);

} while (rval != 0)

;

close (msgsock)

;

} while (TRUE)

;

I*

* Since this program has an infinite loop, the socket "sock" is

* never explicitly closed. However, all sockets will be closed

* automatically when a process is killed or terminates normally.

*/

exit(O);

)

s /

Using select () to Checkfor Pending Connections
\

include <sys/types . h>

include <sys/socket . h>
include <sys/time.h>
include <netinet/in . h>

include <netdb.h>
include <stdio.h>
define TRUE 1

/*

* Thisprogram uses select to check that someone is trying to connect

* before calling accept.
*/

main ()

{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf [1024] ;

int rval;

fd_set ready;
struct timeval to;

/* Create socket

.

*/

sock = socket (AF_INET, SOCK_STREAM, 0);

if (sock < 0) {

perror ("opening stream socket");
exit (1)

;

sue Revision A, of 27 March 1990
microsystems

Chapter 10— A Socket-Based Interprocess Communications Tutorial 27

1

/ * Name socket using wildcards

.

* /

server . sin_family = AF_INET;
server . sin_addr. s_addr = INADDR_ANY;
server . sin_port =0;
if (bind (sock, (struct sockaddr *)&server,

sizeof server) < 0) {

perror ("binding stream socket");
exit (1)

;

}

/ * Find out assigned port number andprint it out

.

* /

length = sizeof server;
if (getsockname (sock, (struct sockaddr *)&server,

&length) < 0) {

perror ("getting socket name");
exit (1)

;

)

printf ("Socket port #%d\n", ntohs (server . sin_port)) ;

/* Start accepting connections . */

listen (sock, 5);

do {

FD_ZERO (& ready)

;

FD_SET(sock, & ready)

;

to.tv_sec = 5;

if (select (sock + 1, &ready, (fd_set *)0,

(fd_set *)0, &to) < 0) {

perror ("select") ;

continue;

)

if (FD_ISSET (sock, & ready)) {

msgsock = accept (sock, (struct sockaddr *)0,

(int *) 0

)

;

if (msgsock == -1)

perror ("accept")

;

else do {

bzero(buf, sizeof buf);
if ((rval = read (msgsock, buf, 1024)) < 0)

perror ("reading stream message");
else if (rval == 0)

printf ("Ending connection\n")

;

else
printf ("—>%s\n", buf)

;

} while (rval > 0)

;

close (msgsock)

;

) else
printf ("Do something else\n");

} while (TRUE)

;

exit (0)

;

Revision A, of 27 March 1990

272 Transport-Level Programming

Figure 10-12 Establishing a Stream Connection

Process 1

Process 1 Process 2

Figure 10-13 Initiating a UNIX Domain Stream Connection
/ s

include <sys/types.h>
include <sys/socket . h>
include <sys/un.h>
include <stdio.h>

define DATA "Half a league, half a league ..."

/*

* This program connects to the socket named in the command line and sends a

* one line message to that socket. Theform of the command line is:

* ustreamwrite pathname
*/

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 273

Figure 10-14

main(argc, argv)
int argc;
char *argv[]

;

{

int sock;

struct sockaddr_un server;
char buf [1024]

;

/* Create socket . */

sock = socket (AF_UNIX, SOCK_STREAM, 0);

if (sock < 0) {

perror ("opening stream socket");
exit (1)

;

)

/ * Connect socket using name specified by command line . * /

server . sun_family = AF_UNIX;
strcpy (server. sun_path, argv [1])

;

if (connect (sock, (struct sockaddr *)&server,
sizeof (struct sockaddr_un)) < 0) {

close (sock)

;

perror ("connecting stream socket");
exit (1)

;

}

if (write (sock, DATA, sizeof (DATA)) < 0)

perror ("writing on stream socket");
exit (0)

;

}

V ,

Accepting a UNIX Domain Stream Connection

(
>

include <sys/types.h>
include <sys/socket . h>
include <sys/un.h>
include <stdio.h>

define NAME "socket"

/*

* This program creates a socket in the UNIX domain and binds a name to it.

* After printing the socket’s name it begins a loop. Each time through the

* loop it accepts a connection and prints out messagesfrom it. When the

* connection breaks, or a termination message comes through, the program
* accepts a new connection.

*/

main (

)

{

int sock, msgsock, rval;

struct sockaddr_un server;
char buf [1024]

;

v .

sun
microsystems

Revision A, of 27 March 1990

274 Transport-Level Programming

/ * Create socket .
* /

sock = socket (AF_UNIX, SOCK_STREAM, 0)

;

if (sock < 0) {

perror ("opening stream socket");
exit (1)

;

)

/ * Name socket using file system name . * /

server . sun_family = AF_UNIX;
strcpy (server . sun_path, NAME);

if (bind(sock, (struct sockaddr *)&server,
sizeof (struct sockaddr_un)) < 0) {

perror ("binding stream socket");
exit (1)

;

}

printf ("Socket has name %s\n", server . sun_path) ;

/ * Start accepting connections

.

* /

listen (sock, 5);

for (;;) {

msgsock = accept (sock, (struct sockaddr *)0,

(int *) 0)

;

if (msgsock == -1)

perror ("accept")

;

else do (

bzero(buf, sizeof buf);
if ((rval = read (msgsock, buf, 1024)) < 0)

perror ("reading stream message")

;

else if (rval == 0)

printf ("Ending connection\n")

;

else
printf ("—>%s\n", buf);

} while (rval > 0);

close (msgsock)

;

)

/*

* Thefollowing statements are not executed, because theyfollow an
* infinite loop. However, most ordinary programs will not run

* forever. In the UNIX domain it is necessary to tell the file

* system that one is through using NAME. In most programs one uses

* the call unlink as below. Since the user will have to kill this

* program, it will be necessary to remove the name by a commandfrom
* the shell.

*1

close (sock)

;

unlink (NAME)

;

exit (0)

;

Asun
microsystems

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 275

10.9. Reads, Writes, Recvs, SunOS has several system calls for reading and writing information. The sim-

etc. plest calls are read () and write(). write () takes as arguments the index

of a descriptor, a pointer to a buffer containing the data, and the size of the data.

The descriptor may indicate either a file or a connected socket. “Connected” can

mean either a connected stream socket (as described in the Connections section

below, or a datagram socket for which a connect(3) call has provided a default

destination. read() also takes a descriptor that indicates either a file or a

socket, write () requires a connected socket since no destination is specified

in the parameters of the system call, read () can be used for either a connected

or an unconnected socket. These calls are, therefore, quite flexible and may be

used to write applications that make no assumptions about the source of their

input or the destination of their output. There are variations on read () and

write () that allow the source and destination of the input and output to use

several separate buffers, while retaining the flexibility to handle both files and

sockets. These are readv () and wr itev(), for read and write vector.

It is sometimes necessary to send high priority data over a connection that may
have unread low priority data at the other end. For example, a user interface pro-

cess may be interpreting commands and sending them on to another process

through a stream socket connection. The user interface may have filled the

stream with as yet unprocessed requests when the user types a command to can-

cel all outstanding requests. Rather than have the high priority data wait to be

processed after the low priority data, it is possible to send it as out-of-band

(OOB) data. The notification of pending OOB data results in the generation of a

SIGURG signal, if this signal has been enabled (see the signal (3) and

sigvec (3) man pages). See An Advanced Socket-Based Interprocess Com-
munications Tutorial for a more complete description of the OOB mechanism.

There are a pair of calls similar to read () and write () that allow options,

including sending and receiving OOB information; these are send () and

recv(). These calls are used only with sockets; specifying a descriptor for a file

will result in the return of an error status. These calls also allow peeking at data

in a stream. That is, they allow a process to read data without removing the data

from the stream. One use of this facility is to read ahead in a stream to determine

the size of the next item to be read. When not using these options, these calls

have the same functions as read () and write().

To send datagrams, one must be allowed to specify the destination. The call

sendto () takes a destination address as an argument and is therefore used for

sending datagrams. The call recvfromO is often used to read datagrams,

since this call returns the address of the sender, if it is available, along with the

data. If the identity of the sender does not matter, one may use read () or

recv ()

.

NOTE Sockets under TLI Emulation: A call to recvfromO or recvmsgO should

return the source address if the user supplies a nun-NULL buffer. Under emula-

tion, though, if the user specifies MSG_PEEK and/or MSG_OOB then the source

address will not be returned. This is only a minor problem.

Finally, there are a pair of calls that allow the sending and receiving of messages

from multiple buffers, when the address of the recipient must be specified. These

microsystems
Revision A, of 27 March 1990

276 Transport-Level Programming

are sendmsg () and recvmsg () . These calls are actually quite general and

have other uses, including, in the UNIX domain, the transmission of a file

descriptor from one process to another.

The various options for reading and writing, together with their parameters, are

shown in Figure 10-15 below. The parameters for each system call reflect the

differences in function of the different calls. In the examples given in this

chapter, the calls read () and write () have been used whenever possible.

Figure 10-15 Varieties ofRead and Write Commands

4^sun
microsystems

Revision A, of 27 March 1990

Chapter 10— A Socket-Based Interprocess Communications Tutorial 277

(
\

/*

* The variable descriptor may be the descriptor of either a file

* or ofa socket.

*1

cc = read (descriptor, buf, nbytes)
int cc, descriptor; char *buf; int nbytes;

/*

* An iovec can include several source buffers.

*/

cc = readv (descriptor, iov, iovcnt)
int cc, descriptor; struct iovec *iov; int iovcnt;

cc = write (descriptor, buf, nbytes)
int cc, descriptor; char *buf; int nbytes;

cc = writev (descriptor, iovec, ioveclen)
int cc, descriptor; struct iovec *iovec; int ioveclen;

/*

* The variable "sock” must be the descriptor ofa socket.

* Flags may include MSG_OOB and MSG_PEEK.
*/

cc = send (sock, msg, len, flags)

int cc, sock; char *msg; int len, flags;

cc = sendto(sock, msg, len, flags, to, tolen)
int cc, sock; char *msg; int len, flags;
struct sockaddr *to; int tolen;

cc = sendmsg (sock, msg, flags)

int cc, sock; struct msghdr msg[]; int flags;

cc = recv(sock, buf, len, flags)

int cc, sock; char *buf; int len, flags;

cc = recvfrom (sock, buf, len, flags, from, fromlen)
int cc, sock; char *buf; int len, flags;
struct sockaddr *from; int *fromlen;

cc = recvmsg (sock, msg, flags)

int cc, socket; struct msghdr msg[]; int flags;

V

Note that the meaning assigned to the msg_accrights and

msg_accright slen fields of the msghdr structure used in the recvmsg (

)

and sendmsg () system calls is protocol-dependent. See the Scatter/Gather

and Exchanging Access Rights section of the System Services Overview for

details about the msghdr structure.

microsystems
Revision A, of 27 March 1990

278 Transport-Level Programming

10.10. Choices This chapter has presented examples of some of the forms of communication

supported by SunOS. These have been presented in an order chosen for ease of

presentation. It is useful to review these options emphasizing the factors that

make each attractive.

Pipes have the advantage of portability, in that they are supported in all UNIX
systems. They also are relatively simple to use. Socketpairs share this simplicity

and have the additional advantage of allowing bidirectional communication. The

major shortcoming of these mechanisms is that they require communicating

processes to be descendants of a common process. They do not allow inter-

machine communication.

The two communication domains, the UNIX domain and the Internet domain,

allow processes with no common ancestor to communicate. Of the two, only the

Internet domain allows communication between machines. This makes the Inter-

net domain a necessary choice for processes running on separate machines.

The choice between datagrams and socket stream communication is best made

by carefully considering the semantic and performance requirements of the appli-

cation. Streams can be both advantageous and disadvantageous. One disadvan-

tage is that, since a process is only allowed a limited number of open file descrip-

tors (normally 64) there is a limit on the number of streams that a process can

have open at any given time. This can cause problems if a single server must

talk with a large number of clients. Another is that for delivering a short mes-

sage the stream setup and teardown time can be unnecessarily long. Weighed

against this are the reliability built into the streams. This will often be the decid-

ing factor in favor of streams.

10.11. What to do Next Many of the examples presented here can serve as models for multiprocess pro-

grams and for programs distributed across several machines. In developing a

new multiprocess program, it is often easiest to first write the code to create the

processes and communication paths. After this code is debugged, the code

specific to the application can be added.

Further documentation of the socket-based IPC mechanisms can be found in An
Advanced Socket-Based Interprocess Communications Tutorial. More detailed

information about particular calls and protocols is provided in the SunOS Refer-

ence Manual.

®sun
'sr microsystems

Revision A, of 27 March 1990

An Advanced Socket-Based

Interprocess Communications Tutorial

WARNING Socket-based interprocess communication (IPC), while still supported, is no

longer the preferredframeworkfor transport-levelprogramming. Socket-

based IPC has been superceded as the “standard” method ofaccessing network

protocols by a set ofOSI-compatible transport mechanisms based upon

STREAMS and accessed by way ofa Transport Library Interface (TLI). For

details on the TLI, see the previous chapter, Transport Level Interface Pro-

gramming.

If you are building a new network application that requires direct access to tran-

sport facilities, use the TLI mechanisms. If you do not require such direct access,

Remote Procedure Calls (RPC) are the preferred programming framework— see

the Remote Procedure Call Programming Guide section of this manual for

details. New programs should not be based on sockets.

SunOS contains socket-based IPC mechanisms derived from Berkeley UNIX.

This chapter describes the fine points of those mechanisms by supplementing the

more introductory information given in A Socket-Based Interprocess Communi-

cations Tutorial. The majority of the chapter considers the use of these primi-

tives in developing network applications. The reader is expected to be familiar

with the C programming language.

Socket-based interprocess communication was first introduced in 4.2BSD and

subsequently incorporated into SunOS. The design of these facilities was the

result of more than two years of discussion and research, and they incorporated

many ideas from then-current research, while maintaining the UNIX philosophy

of simplicity and conciseness.

Prior to the 4.2BSD IPC facilities, the only standard mechanism that allowed two

processes to communicate were pipes (the mpx files that were in Version 7 were

experimental). Unfortunately, pipes are very restrictive in that the two communi-

cating processes must be related through a common ancestor. Further, the

semantics of pipes makes them almost impossible to maintain in a distributed

environment.

Earlier attempts at extending the IPC facilities of the UNIX system have met

with mixed reaction. The majority of the problems have been related to the fact

that these facilities have been tied to the UNIX file system, either through nam-

ing or implementation. Consequently, the 4.3BSD IPC facilities were designed

as a totally independent subsystem. They allow processes to rendezvous in many

ways. Processes may rendezvous through a UNIX file system-like name space (a

Asun
microsystems

279 Revision A, of 27 March 1990

280 Transport-Level Programming

11.1. Basics

Socket Types

space where all names are path names) as well as through a network name space.

In fact, new name spaces may be added at a future time with only minor changes

visible to users. Further, the communication facilities have been extended to

include more than the simple byte stream provided by a pipe.

This chapter provides a high-level description of the socket-based IPC facilities

and their use. It is designed to complement the manual pages for the IPC primi-

tives with examples of their use. After this initial description, come four more

sections. The Basics section introduces the IPC-related system calls and the

basic model of communication. The Library Routines section describes some of

the supporting library routines that users may find useful in constructing distri-

buted applications. The Client/Server Model section is concerned with the

client/server model used in developing applications and includes examples of the

two major types of servers. The Advanced Topics section delves into advanced

topics that sophisticated users are likely to encounter when using the these IPC

facilities.

The basic building block for communication is the socket 0- A socket is an

endpoint of communication to which a name may be bound. Each socket in use

has a type and one or more associated processes. Sockets exist within communi-

cations domains. Domains are abstractions which imply both an addressing

structure (address family) and a set of protocols which implement various socket

types within the domain (protocol family). Communications domains are intro-

duced to bundle common properties of processes communicating through sock-

ets. One such property is the scheme used to name sockets. For example, in the

UNIX domain sockets are named with UNIX path names; e.g. a socket may be

named /dev/foo. Sockets normally exchange data only with sockets in the

same domain (it may be possible to cross between communications domains, but

only if some translation process is performed). The 4.3BSD, and thus the

socket-based SunOS IPC facilities support several separate communications

domains: notably the UNIX domain, for on-system communication, and the

Internet domain, which is used by processes that communicate using the DARPA
standard communication protocols. The underlying communication facilities

provided by these domains have a significant influence on the internal system

implementation as well as the interface to socket facilities available to a user. An
example of the latter is that a socket operating in the UNIX domain sees a subset

of the error conditions that are possible when operating in the Internet, DECNET,
X.25, or OSI domains.

Sockets are typed according to the communication properties visible to a user.

Processes are presumed to communicate only between sockets of the same type,

although there is nothing that prevents communication between sockets of dif-

ferent types should the underlying communication protocols support this.

There are several types of sockets currently available:

A stream socket provides for the bidirectional, reliable, sequenced, and

unduplicated flow of data without record boundaries. Aside from the

bidirectionality of data flow, a pair of connected stream sockets provides an

interface nearly identical to that of pipes8 .

8 In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been

implemented internally as simply a pair of connected stream sockets.

Chapter 11— An Advanced Socket-Based Interprocess Communications Tutorial 281

Socket Creation

A datagram socket supports bidirectional flow of data that is not promised to

be sequenced, reliable, or unduplicated. That is, a process receiving mes-

sages on a datagram socket may find messages duplicated, and, possibly, in

an order different from the order in which they were sent. An important

characteristic of a datagram socket is that record boundaries in data are

preserved. Datagram sockets closely model the facilities found in many
contemporary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication proto-

cols which support socket abstractions. These sockets are normally

datagram oriented, though their exact characteristics are dependent on the

interface provided by the protocol. Raw sockets are not intended for the

general user; they have been provided mainly for those interested in

developing new communication protocols, or for gaining access to some of

the more esoteric facilities of an existing protocol. The use of raw sockets is

considered in the Advanced Topics section below.

Another potential socket type with interesting properties is the sequencedpacket

socket. Such a socket would have properties similar to those of a stream socket,

except that it would preserve record boundaries. There is currently no support

for this type of socket.

Another potential socket type which has interesting properties is the reliably

delivered message socket. The reliably delivered message socket has similar

properties to a datagram socket, but with reliable delivery. There is currently no

support for this type of socket.

To create a socket, the socket () system call is used:

s = socket (domain, type, protocol);

This call requests that the system create a socket in the specified domain and of

the specified type. A particular protocol may also be requested. If the protocol is

left unspecified (a value of 0), the system will select an appropriate protocol from

those that comprise the domain and that may be used to support the requested

socket type. The user is returned a descriptor (a small integer number) that may
be used in later system calls that operate on sockets. The domain is specified as

one of the manifest constants defined in the file <sys/ socket . h>. For the

UNIX domain the constant is

AF_UNIX; for the Internet domain, it is AF_INET9
. The socket types are also

defined in this file and one of SOCK_STREAM, SOCK_dgram, or
SOCK_RAW must be specified. To create a stream socket in the Internet domain

the following call might be used:

S = socket (AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol

9 The manifest constants are named AF_whatever as they indicate the “address format" to use in interpreting

names.

microsystems
Revision A, of 27 March 1990

282 Transport-Level Programming

Binding Local Names

providing the underlying communication support. To create a datagram socket

for on-machine use the call might be:

s = socket (AF_UNIX, SOCK_DGRAM, 0);

The default protocol (used when the protocol argument to the socket () call is

0) should be correct for most every situation. However, it is possible to specify a

protocol other than the default; this will be covered in the Advanced Topics sec-

tion below.

There are several reasons a socket call may fail. Aside from the rare occurrence

of lack of memory (ENOBUFS), a socket request may fail due to a request for an

unknown protocol (EPROTONOSUPPORT), or a request for a type of socket for

which there is no supporting protocol (EPROTOTYPE).

A socket is created without a name. Until a name is bound to a socket, processes

have no way to reference it and, consequently, no messages may be received on

it. Communicating processes are bound by an association. In the Internet

domain, an association is composed of local and foreign addresses, and local and

foreign ports, while in the UNIX domain, an association is composed of local and

foreign path names (the phrase “foreign pathname” means a pathname created by

a foreign process, not a pathname on a foreign system). In most domains, associ-

ations must be unique. In the Internet domain there may never be duplicate

<protocol, local address, local port,foreign address,foreign port>

tuples. UNIX domain sockets need not always be bound to a name, but when
bound there may never be duplicate

<protocol, local pathname,foreign pathname>

tuples. Currently, the pathnames may not refer to files already existing on the

system, though this may change in future releases.

The bind () system call allows a process to specify half of an association,

<local address, local port> (or <local pathname>)

while the connect () and accept ()
primitives are used to complete a

socket’s association.

In the Internet domain, binding names to sockets can be fairly complex. For-

tunately, it is usually not necessary to specifically bind an address and port

number to a socket, because the connect () and send () calls will automati-

cally bind an appropriate address if they are used with an unbound socket.

The bind () system call is used as follows:

bind(s, name, namelen)

;

The bound name is a variable length byte string that is interpreted by the support-

ing protocol(s). Its interpretation may vary between communication domains

(this is one of the properties that comprise a domain). As mentioned, Internet

domain names contain an Internet address and port number. In the UNIX
domain, names contain a path name and a family, which is always AF_UNIX. If

one wanted to bind the name /tmp/foo to a UNIX domain socket, the

SUFI Revision A, of 27 March 1990
microsystems

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 283

Connection Establishment

following code would be used :

10

\

include <sys/un.h>

struct sockaddr_un addr;

strcpy (addr . sun_path, "/tmp/foo")

;

addr . sun_family = AF_UNIX;
bind(s, (struct sockaddr *) Saddr, strlen (addr . sun_path) +

sizeof (addr . sun_family)) ;

s J

Note that in determining the size of a UNIX domain address null bytes are not

counted, which is why strlen () is used. In the current implementation of

UNIX domain IPC, the file name referred to in addr . sun_path is created as a

socket in the system file space. The caller must, therefore, have write permission

in the directory where addr . sun_path is to reside, and this file should be

deleted by the caller when it is no longer needed. Future versions may not create

this file.

In binding an Internet address things become more complicated. The actual call

is similar,

include <sys/types.h>
include <netinet/in.h>

struct sockaddr_in sin;

bind(s, (struct sockaddr *) &sin, sizeof sin)

;

s

but the selection of what to place in the address sin requires some discussion.

We will come back to the problem of formulating Internet addresses in the

Library Routines section when the library routines used in name resolution are

discussed.

Connection establishment is usually asymmetric, with one process a client and

the other a server. The server, when willing to offer its advertised services, binds

a socket to a well-known address associated with the service and then passively

listens on its socket. It is then possible for an unrelated process to rendezvous

with the server. The client requests services from the server by initiating a con-

nection to the server’s socket. On the client side the connect () call is used to

initiate a connection. Using the UNIX domain, this might appear as,

10 Beware of the tendency to call the “addr” structure “sun”, which collides with a symbol predefined by the

preprocessor.

#sun
xr microsystems

Revision A, of 27 March 1990

284 Transport-Level Programming

while in the Internet domain,

where server in the example above would contain either the UNIX pathname, or

the Internet address and port number of the server to which the client process

wishes to speak. If the client process’s socket is unbound at the time of the con-

nect call, the system will automatically select and bind a name to the socket if

necessary. See the Signals and Process Groups section below. This is the usual

way that local addresses are bound to a socket.

An error is returned if the connection was unsuccessful (however, any name
automatically bound by the system remains). Otherwise, the socket is associated

with the server and data transfer may begin. Some of the more common errors

returned when a connection attempt fails are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system

decided there was no point in retrying the connection attempt any more.

This usually occurs because the destination host is down, or because prob-

lems in the network resulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reason. This is usually due to a server

process not being present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered

to the client host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is un-

known (no route to the network or host is present), or because of status infor-

mation returned by intermediate gateways or switching nodes. Many times

the status returned is not sufficient to distinguish a network being down from

a host being down, in which case the system indicates the entire network is

unreachable.

For the server to receive a client’s connection it must perform two steps after

binding its socket. The first is to indicate a willingness to listen for incoming

connection requests:

listen (s, 5)

;

The second parameter to the listen () call specifies the maximum number of

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 285

Data Transfer

outstanding connections that may be queued awaiting acceptance by the server

process; this number may be limited by the system. Should a connection be

requested while the queue is full, the connection will not be refused, but rather

the individual messages that comprise the request will be ignored. This gives a

harried server time to make room in its pending connection queue while the

client retries the connection request. Had the connection been returned with the

ECONNREFUSED error, the client would be unable to tell if the server was up or

not. As it is now it is still possible to get the ETIMEDOUT error back, though

this is unlikely. The backlog figure supplied with the listen call is currently lim-

ited by the system to a maximum of 5 pending connections on any one queue.

This avoids the problem of processes hogging system resources by setting an

infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server may accept () a connection:

/ s

struct sockaddr_in from;

fromlen = sizeof from;
newsock = accept (s, (struct sockaddr *)&from, Sfromlen)

;

V

(For the UNIX domain, from would be declared as a struct sockaddr_un,
but nothing different would need to be done as far asfromlen is concerned. In

the examples that follow, only Internet routines will be discussed.) A new
descriptor is returned on receipt of a connection (along with a new socket). If the

server wishes to find out who its client is, it may supply a buffer for the client

socket’s name. The value-result parameterfromlen is initialized by the server to

indicate how much space is associated withfrom, then modified on return to

reflect the true size of the name. If the client’s name is not of interest, the second

parameter may be a null pointer.

accept () normally blocks. That is, accept () will not return until a connec-

tion is available or the system call is interrupted by a signal to the process.

Further, there is no way for a process to indicate it will accept connections from

only a specific individual, or individuals. It is up to the user process to consider

who the connection is from and close down the connection if it does not wish to

speak to the process. If the server process wants to accept connections on more

than one socket, or wants to avoid blocking on the accept call, there are alterna-

tives; they will be considered in the Advanced Topics section below.

With a connection established, data may begin to flow. To send and receive data

there are a number of possible calls. With the peer entity at each end of a con-

nection anchored, a user can send or receive a message without specifying the

peer. As one might expect, in this case, then the normal read () and write (

)

system calls are usable,

write (s, buf, sizeof buf);

readfs, buf, sizeof buf);

In addition to read () and writeO, the calls send () andrecv() maybe
used:

©sun
Xr microsystems

Revision A, of 27 March 1990

286 Transport-Level Programming

Discarding Sockets

Connectionless Sockets

send(s, buf, sizeof buf, flags);
recv(s, buf, sizeof buf, flags);

While send () andrecv() are virtually identical to read () and writeO.
the extraflags argument is important. The flags, defined in <sys/socket . h>,

may be specified as a non-zero value if one or more of the following is required:

MSG_OOB send/receive out of band data

MSG_PEEK look at data without reading

MSG_DONTROUTE send data without routing packets (internal only)

Out of band data is a notion specific to stream sockets, and one that we will not

immediately consider. The option to have data sent without routing applied to

the outgoing packets is currently used only by the routing table management pro-

cess, and is unlikely to be of interest to the casual user. However, the ability to

preview data is of interest. When MSG_PEEK is specified with a recv() call,

any data present is returned to the user, but treated as still “unread”. That is, the

next read () or recv (

)

call applied to the socket will return the data previ-

ously previewed.

Once a socket is no longer of interest, it may be discarded by applying a

close () to the descriptor,

close (s)

;

If data is associated with a socket that promises reliable delivery (e.g. a stream

socket) when a close takes place, the system will continue to attempt to transfer

the data. However, after a fairly long period of time, if the data is still

undelivered, it will be discarded. Should a user have no use for any pending

data, it may perform a shutdown () on the socket prior to closing it. This call

is of the form:

shutdown (s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more

data will be sent, or 2 if no data is to be sent or received.

To this point we have been concerned mostly with sockets that follow a connec-

tion oriented model. However, there is also support for connectionless interac-

tions typical of the datagram facilities found in contemporary packet switched

networks. A datagram socket provides a symmetric interface to data exchange.

While processes are still likely to be client and server, there is no requirement for

connection establishment. Instead, each message includes the destination

address.

Datagram sockets are created as before. If a particular local address is needed,

the bind () operation must precede the first data transmission. Otherwise, the

system will set the local address and/or port when data is first sent. To send data,

the sendto ()
primitive is used,

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen)

The s, buf, buflen, and flags parameters are used as before. The to and tolen

values are used to indicate the address of the intended recipient of the message.

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 287

When using an unreliable datagram interface, it is unlikely that any errors will be

reported to the sender. When information is present locally to recognize a mes-

sage that can not be delivered (for instance when a network is unreachable), the

call will return -1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom (

)

primitive is provided:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from,
Sfromlen)

;

Once again, thefromlen parameter is handled in a value-result fashion, initially

containing the size of the from buffer, and modified on return to indicate the

actual size of the address from which the datagram was received.

In addition to the two calls mentioned above, datagram sockets may also use the

connect () call to associate a socket with a specific destination address. In

this case, any data sent on the socket will automatically be addressed to the con-

nected peer, and only data received from that peer will be delivered to the user.

Only one connected address is permitted for each socket at one time; a second

connect will change the destination address, and a connect to a null address

(domain AF_UNSPEC) will disconnect. Connect requests on datagram sockets

return immediately, as this simply results in the system recording the peer’s

address (as compared to a stream socket, where a connect request initiates estab-

lishment of an end to end connection), accept () and listen () are not used

with datagram sockets.

While a datagram socket is connected, errors from recent send () calls may be

returned asynchronously. These errors may be reported on subsequent operations

on the socket, or a special socket option used with get sockopt

,

SO_ERROR, may be used to interrogate the error status. A select () for read-

ing or writing will return true when an error indication has been received. The
next operation will return the error, and the error status is cleared. Other of the

less important details of datagram sockets are described in the Advanced Topics

section below.

Revision A, of 27 March 1990

288 Transport-Level Programming

Input/Output Multiplexing One last facility often used in developing applications is the ability to multiplex

i/o requests among multiple sockets and/or files. This is done using the

select () call:

\

#include <sys/time.h>
#include <sys/types . h>

fd_set readmask, writemask, exceptmask;
struct timeval timeout;

select (nfds, Sreadmask, Swritemask, Sexceptmask, &timeout)

;

c

select () takes as arguments pointers to three sets, one for the set of file

descriptors on which the caller wishes to be able to read data, one for those

descriptors to which data is to be written, and one for which exceptional condi-

tions are pending; out-of-band data is the only exceptional condition currently

implemented by the socket abstraction. If the user is not interested in certain

conditions (i.e., read, write, or exceptions), the corresponding argument to the

select () should be a properly cast null pointer.

Each set is actually a structure containing an array of long integer bit masks; the

size of the array is set by the definition FD_SETSI ZE. The array is long enough

to hold one bit for each of FD_SETS I ZE file descriptors.

The macros FD_SET (fd, &mask) and FD_CLR (fd, &mask) have been pro-

vided for adding and removing file descriptor/d in the set mask. The set should

be zeroed before use, and the macro FD_ZERO (&mask) has been provided to

clear the set mask. The parameter nfds in the select () call specifies the range

of file descriptors (i.e. one plus the value of the largest descriptor) to be exam-

ined in a set.

A timeout value may be specified if the selection is not to last more than a

predetermined period of time. If the fields in timeout are set to 0, the selection

takes the form of a poll, returning immediately. If the last parameter is a null

pointer, the selection will block indefinitely 11 , select () normally returns the

number of file descriptors selected; if the select 0 call returns due to the

timeout expiring, then the value 0 is returned. If the select () terminates

because of an error or interruption, a -1 is returned with the error number in

errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors

are ready to be read from, written to, or have exceptional conditions pending.

The status of a file descriptor in a select mask may be tested with the

FD_ISSET (fd, &mask) macro, which returns a non-zero value iffd is a

member of the set mask, and 0 if it is not.

11 To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received

by the caller, interrupting the system call.

f#sun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 289

To determine if there are connections waiting on a socket to be used with an

accept () call, select () can be used, followed by a FD_ISSET (fd,

&mask

)

macro to check for read readiness on the appropriate socket. If

FD_ISSET returns a non-zero value, indicating permission to read, then a con-

nection is pending on the socket.

As an example, to read data from two sockets, si and s2 as it is available from
each and with a one-second timeout, the following code might be used:—
include <sys/time.h>
include <sys/types . h>

fd_set read_template;
struct timeval wait;

for (;;) {

wait.tv_sec = 1; /* one second */

wait.tv_usec = 0;

FD_ZERO (&read_template)

;

FD_SET (si, &read_template)

;

FD_SET(s2, &read_template)

;

nb = select (FD_SETSIZE, &read_template, (fd_set *) 0,

(fd_set *) 0, &wait)

;

if (nb <= 0) {

/*

* An error occurred during the select, or
* the select timed out.

*1

}

if (FD_ISSET (si, &read_template)) {

/ * Socket #1 is ready to be readfrom. * /

}

if (FD_ISSET (s2, &read_template)) {

/ * Socket #2 is ready to be readfrom. * /

}

1

In previous versions of select(), its arguments were pointers to integers

instead of pointers tofdjets. This type of call will still work as long as the

number of file descriptors being examined is less than the number of bits in an

integer; however, the methods illustrated above should be used in all current pro-

grams.

select () provides a synchronous multiplexing scheme. Asynchronous
notification of output completion, input availability, and exceptional conditions

is possible through use of the SIGIO and SIGURG signals described in the

#sun
microsystems

Revision A, of 27 March 1990

290 Transport-Level Programming

Advanced. Topics section below.

11.2. Library Routines The discussion in the Basics section above indicated the possible need to locate

and construct network addresses when using the interprocess communication

facilities in a distributed environment. To aid in this task a number of routines

have been added to the standard C run-time library. In this section we will con-

sider the new routines provided to manipulate network addresses.

Locating a service on a remote host requires many levels of mapping before

client and server may communicate. A service is assigned a name that is

intended for human consumption; e.g. the login server on host monet. This

name, and the name of the peer host, must then be translated into network

addresses that are not necessarily suitable for human consumption. Finally, the

address must then used in locating a physical location and route to the service.

The specifics of these three mappings are likely to vary between network archi-

tectures. For instance, it is desirable for a network to not require hosts to be

named in such a way that their physical location is known by the client host.

Instead, underlying services in the network may discover the actual location of

the host at the time a client host wishes to communicate. This ability to have

hosts named in a location independent manner may induce overhead in connec-

tion establishment, as a discovery process must take place, but allows a host to be

physically mobile without requiring it to notify its clientele of its current loca-

tion.

Standard routines are provided for mapping host names to network addresses,

network names to network numbers, protocol names to protocol numbers, and

service names to port numbers and the appropriate protocol to use in communi-

cating with the server process. The file <netdb . h> must be included when

using any of these routines.

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 29

1

Host Names

Network Names

An Internet host name to address mapping is represented by the hostent struc-

ture:

struct hostent {

char *h__name; /*

char **h_aliases; /*

int h_addrtype

;

/*

int h_length; /*

char **h_addr_list; /*

}

;

fdefine h_addr h_addr_list [0]

official name of host * /

alias list */

host address type (e.g., AFJNET) * /

length ofaddress */

list ofaddresses, null terminated * /

/* first address, network byte order */

J

The routine gethostbyname(3N) takes an Internet host name and returns a

hostent structure, while the routine gethostbyaddr(3N) maps Internet

host addresses into a hostent structure. The routine inet_ntoa(3N) maps an

Internet host address into an ASCII string for printing by log and error messages.

The official name of the host and its public aliases are returned by these routines,

along with the address type (domain) and a null terminated list of variable length

addresses. This list of addresses is required because it is possible for a host to

have many addresses, all having the same name. The h_addr definition is pro-

vided for backward compatibility, and is defined to be the first address in the list

of addresses in the hostent structure.

The database for these calls is provided either by the Network Information Ser-

vice lookup (the preferred alternative), from the /etc/hosts file (see

hosts(5)), or byuseofthe resolver (5) nameserver. Because of the differ-

ences in these databases and their access protocols, the information returned may
differ. When using the Network Information Service on the host table version of

gethostbynameO, only one address will be returned, but all listed aliases will

be included. The nameserver version may return alternate addresses, but will not

provide any aliases other than one given as argument.

As for host names, routines for mapping network names to numbers, and back,

are provided. These routines return a netent structure:

/*

* Assumption here is that a network number
* fits in 32 bits - probably a poor one.

*1

struct netent {

char *n name; /* official name ofnet * /

char **n_aliases; /* alias list */

int n_addrtype; /* net address type * /

int
1 .

n_net; /* network number, host byte order * /

} ;

v

The routines getnetbyname (3N)

,

getnetbynumber (3N)

,

and

getnetent (3N) are the network counterparts to the host routines described

above. The routines extract their information from the Network Information

microsystems
Revision A, of 27 March 1990

292 Transport-Level Programming

Protocol Names

Service Names

Service maps hosts . byname and hosts . byaddr or from

/etc /networks.

For protocols (which are defined in the Network Information Service

protocols .byname map and /etc/protocols) the protoent structure

defines the protocol-name mapping used with the routines

getprotobyname(3N), getprotobynumber(3N), and

getprotoent(3N):
r \

struct protoent {

char *p name; /* official protocol name */

char **p aliases; /* alias list */

int p__proto;

1;— / * protocol number * /

/

Information regarding services is a bit more complicated. A service is expected

to reside at a specific port and employ a particular communication protocol. This

view is consistent with the Internet domain, but inconsistent with other network

architectures. Further, a service may reside on multiple ports. If this occurs, the

higher level library routines will have to be bypassed or extended. Services

available are contained in the Network Information Service

services .byname map and the file /etc/services. (Actually, the name

services .byname is a misnomer, since the map actually orders Internet ports

by number and protocol).
12 A service mapping is described by the servent

structure:

struct servent {

char *s_name; /* official service name * /

char **s_aliases; /* alias list
* /

int s_port; /* port number, network byte order * /

char *s_proto; /* protocol to use * /

1

;

v '

The routine getservbyname (3N) maps service names to a servent structure

by specifying a service name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname ("telnet", (char *) 0) ;

returns the service specification for a telnet server using any protocol, while the

call

sp = getservbyname ("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines

get servbyport (3N) and getservent (3N) are also provided. The get

-

servbyport () routine has an interface similar to that provided by

12 For details about the association of RPC services with ports, see the Port Mapper Program Protocol

section of the Network Services chapter.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 293

Miscellaneous

getservbynameO; an optional protocol name may be specified to qualify

lookups.

With the support routines described above, an Internet application program

should rarely have to deal directly with addresses. This allows services to be

developed as much as possible in a network independent fashion. It is clear,

however, that purging all network dependencies is very difficult. So long as the

user is required to supply network addresses when naming services and sockets

there will always some network dependency in a program. For example, the nor-

mal code included in client programs, such as the remote login program, is of the

form shown in Figure 11-1. (This example will be considered in more detail in

the Client/Server Model section below.)

Aside from the address-related data base routines, there are several other routines

available in the run-time library that are of interest to users. These are intended

mostly to simplify manipulation of names and addresses. Table 11-1 summarizes

the routines for manipulating variable length byte strings and handling byte

swapping of network addresses and values.

Table 11-1 C Run-time Routines

Call Synopsis

bcmp(sl, s2, n)

bcopy(sl, s2, n)

bzero(base, n)

htonl (val)

htons (val)

ntohl (val)

ntohs (val)

Compare byte-strings; 0 if same, not 0 otherwise

Copy n bytes from si to s2

Zero-fill n bytes starting at base

32-bit quantity from host into network byte order

16-bit quantity from host into network byte order

32-bit quantity from network into host byte order

16-bit quantity from network into host byte order

The byte swapping routines are provided because the operating system expects

addresses to be supplied in network order. On some architectures, such as the

VAX, host byte ordering is different than network byte ordering. Consequently,

programs are sometimes required to byte swap quantities. The library routines

that return network addresses provide them in network order so that they may
simply be copied into the structures provided to the system. This implies users

should encounter the byte swapping problem only when interpreting network

addresses. For example, if an Internet port is to be printed out the following code

would be required:

printf ("port number %d\n", ntohs (sp->s_port))

;

On machines such as the Sun-3 and Sun-4, where these routines are unneeded,

they are defined as null macros. 13

13 Sun-4 (SPARC) machines do have alignment restrictions which network programmers need to be aware

of. See Porting Software to SPARC Systems.

Revision A, of 27 March 1990

294 Transport-Level Programming

Figure 11-1 Remote Login Client Code

include <sys/types . h>
include <sys/socket . h>
include <netinet/in . h>
include <stdio.h>
include <netdb.h>

main(argc, argv)

int argc;
char *argv[];

{

struct sockaddr_in server;
struct servent *sp;

struct hostent *hp;

int s;

sp = getservbyname ("login", "tcp");
if (sp == NULL) {

fprintf (stderr,

"rlogin: tcp/login: unknown service\n")

;

exit (1)

;

}

hp = gethostbyname (argv [1])

;

if (hp == NULL) {

fprintf (stderr,

"rlogin: %s: unknown host\n", argv[l]);
exit (2)

;

)

bzero((char *)&server, sizeof server);
bcopy (hp->h_addr, (char *) Sserver. sin_addr,

hp->h_length)

;

server . sin_family = hp->h_addrtype;
server . sin_j?ort = sp->s_port;
s = socket (AF_INET, SOCK_STREAM, 0);

if (s < 0) {

perror ("rlogin: socket");
exit (3)

;

}

/ * Connect does the bindfor us * /

if (connect (s, (struct sockaddr *)&server,
sizeof server) < 0) {

perror ("rlogin: connect") ;

exit (5) ;

}

exit (0) ;

}

l

#sun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 295

11.3. Client/Server Model The most commonly used paradigm in constructing distributed applications is the

client/server model. In this scheme client applications request services from a

server process. This implies an asymmetry in establishing communication

between the client and server that has been examined in the Basics section above.

In this section we will look more closely at the interactions between client and

server, and consider some of the problems in developing client and server appli-

cations.

The client and server require a well known set of conventions before service may

be rendered (and accepted). This set of conventions comprises a protocol that

must be implemented at both ends of a connection. Depending on the situation,

the protocol may be symmetric or asymmetric. In a symmetric protocol, either

side may play the master or slave roles. In an asymmetric protocol, one side is

immutably recognized as the master, with the other as the slave. An example of

a symmetric protocol is the TELNET protocol used in the Internet for remote ter-

minal emulation. An example of an asymmetric protocol is the Internet file

transfer protocol, FTP. No matter whether the specific protocol used in obtaining

a service is symmetric or asymmetric, when accessing a service there is a client

process and a server process. We will first consider the properties of server

processes, then client processes.

A server process normally listens at a well known address for service requests.

That is, the server process remains dormant until a connection is requested by a

client’s connection to the server’s address. At such a time the server process

“wakes up” and services the client, performing whatever appropriate actions the

client requests of it.

Alternative schemes that use a service server may be used to eliminate a flock of

server processes clogging the system while remaining dormant most of the time.

For Internet servers, this scheme has been implemented via inetd, the so called

“internet super-server.” inetd listens at a variety of ports, determined at start-

up by reading a configuration file. When a connection is requested to a port on

which inetd is listening, inetd executes the appropriate server program to

handle the client. With this method, clients are unaware that an intermediary

such as inetd has played any part in the connection, inetd will be described

in more detail in the Advanced Topics section below.

Servers In SunOS most servers are accessed at well known Internet addresses or UNIX
domain names. The form of their main loop is illustrated by the following code

form the remote-login server:

Figure 11-2 Remote Login Server—
mainfargc, argv)

int argc;

char *argv[];

{

int f;

struct sockaddr_in from;

struct sockaddr_in sin;

struct servent *sp;

\ /

sue Revision A, of 27 March 1990
microsystems

296 Transport-Level Programming

sp = getservbyname ("login" , "tcp");
if (sp == NULL) {

fprintf (stderr,

"rlogind: tcp/login: unknown service\n")

;

exit (1)

;

}

#ifndef DEBUG
/ * Disassociate serverfrom controlling terminal . * /

#endif

sin.sin_port = sp->s_j5ort; /* Restricted port */

sin.sin_addr = INADDR_ANY;

f = socket (AF_INET, SOCK_STREAM, 0);

if (bind(f, (struct sockaddr *)&sin, sizeof sin) < 0) {

}

listen (f , 5)

;

for (;;) {

int g, len = sizeof from;

g = accept (f, (struct sockaddr *) &from, &len)

;

if (g < 0) {

if (errno != EINTR)
syslog (LOG_ERR, "rlogind: accept: %m") ;

continue;

}

if (fork() == 0) {

close (f)

;

doit (g, &from)

;

)

close (g)

;

)

exit (0) ;

}

v

The first step taken by the server is look up its service definition:

r ~s

sp = getservbyname ("login", "tcp")

;

if (sp == NULL) {

fprintf (stderr,
"rlogind: tcp/login: unknown service\n")

;

exit (1)

;

}

v

The result of the getservbyname () call is used in later portions of the code

to define the Internet port at which it listens for service requests (indicated by a

fsun
Xr microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 297

connection). Some standard port numbers are given in the file

/usr/include/netinet/in .h for backward compatibility purposes.

Step two is to disassociate the server from the controlling terminal of its invoker:

\

for (i = getdtablesize () -1; i >= 0; — i)

close (i)

;

open ("/dev/null", 0_RD0NLY)

;

dup2 (0 , 1) ;

dup2 (0 , 2) ;

i = open ("/dev/tty", 0_RDWR)

;

if (i >= 0) {

ioctl (i, TIOCNOTTY, 0);

close (i)

;

1

This step is important as the server will likely not want to receive signals

delivered to the process group of the controlling terminal. Note, however, that

once a server has disassociated itself it can no longer send reports of errors to a

terminal, and must log errors via syslog().

Once a server has established a pristine environment, it creates a socket and

begins accepting service requests. The bind () call is required to insure the

server listens at its expected location. It should be noted that the remote login

server listens at a restricted port number, and must therefore be run with a user-id

of root. This concept of a “restricted port number” is covered in the Advanced

Topics section below.

The main body of the loop is fairly simple:

/ \

for (;;) {

int g, len = sizeof from;

g = accept (f, (struct sockaddr *)&from, &len)

;

if (g < 0) {

if (errno != EINTR)
syslog (LOG_ERR, "rlogind: accept: %m");

continue;

1

if <fork<) == 0) { /* Child */

close (f)

;

doit (g, &f rom)

;

}

close (g) ; /* Parent */

1

V

An accept () call blocks the server until a client requests service. This call

could return a failure status if the call is interrupted by a signal such as

SIGCHLD (to be discussed in the Advanced Topics section below.) Therefore,

the return value from accept () is checked to insure a connection has actually

Revision A, of 27 March 1990

298 Transport-Level Programming

been established, and an error report is logged via syslog () if an error has

occurred.

With a connection in hand, the server then forks a child process and invokes the

main body of the remote login protocol processing. Note how the socket used by

the parent for queuing connection requests is closed in the child, while the socket

created as a result of the accept () is closed in the parent. The address of the

client is also handed the doit () routine because it requires it in authenticating

clients.

Clients The client side of the remote login service was shown earlier in Figure 11 -1 .

One can see the separate, asymmetric roles of the client and server clearly in the

code. The server is a passive entity, listening for client connections, while the

client process is an active entity, initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login process.

As in the server process, the first step is to locate the service definition for a

remote login: —
sp = getservbyname ("login", "tcp");
if (sp == NULL) {

fprintf (stderr,

"rlogin: tcp/login: unknown service\n");
exit (1)

;

1

k >

Next the destination host is looked up with a gethostbyname () call:

hp = gethostbyname (argv[l])

;

if (hp == NULL) {

fprintf (stderr, "rlogin: %s: unknown host\n", argv[l]);
exit (2)

;

}

v >

With this accomplished, all that is required is to establish a connection to the

server at the requested host and start up the remote login protocol. The address

buffer is cleared, then filled in with the Internet address of the foreign host and

the port number at which the login process resides on the foreign host:

bzero ((char *)&server, sizeof server);
bcopy (hp->h_addr, (char *) Sserver . sin_addr, hp->h_length)

;

server . sin_family = hp->h_addrtype;
server . sin_port = sp->s_port;

V

A socket is created, and a connection initiated. Note that connect () implicitly

performs a bind () call, since s is unbound.

#sun
\r microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 299—
s = socket (hp->h_addrtype, SOCK_STREAM, 0)

;

if (s < 0) {

perror ("rlogin: socket");
exit (3)

;

}

if (connect (s, (struct sockaddr *)&server,
sizeof server) < 0) {

perror ("rlogin: connect")

;

exit (4)

;

}

v

The details of the remote login protocol will not be considered here.

Connectionless Servers While connection-based services are the norm, some services are based on the

use of datagram sockets. One, in particular, is the rwho service which provides

users with status information for hosts connected to a local area network. This

service, while predicated on the ability to broadcast information to all hosts con-

nected to a particular network, is of interest as an example usage of datagram

sockets.

A user on any machine running the rwho server may find out the current status of

a machine with the ruptime program. The output generated is illustrated in

Figure 11-2.

Table 11-2 ruptime Output

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31

cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59

calder up 10:10, 0 users, load 0.27, 0.15, 0.14

dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65

degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41

ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56

emie down 0:24

esvax down 17:04

oz down 16:09

statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86

Status information for each host is periodically broadcast by rwho server

processes on each machine. The same server process also receives the status

information and uses it to update a database. This database is then interpreted to

generate the status information for each host. Servers operate autonomously,

coupled only by the local network and its broadcast capabilities.

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must

process each message, whether or not using an rwho server. Unless such a ser-

vice is sufficiently universal and is frequently used, the expense of periodic

broadcasts outweighs the simplicity.

®sun
Xr microsystems

Revision A, of 27 March 1990

300 Transport-Level Programming

The rwho server, in a simplified form, is pictured below. It preforms two

separate tasks. The first is to act as a receiver of status information broadcast by

other hosts on the network. This job is carried out in the main loop of the pro-

gram. Packets received at the rwho port are interrogated to insure they’ve been

sent by another rwho server process, then are time stamped with their arrival time

and used to update a file indicating the status of the host. When a host has not

been heard from for an extended period of time, the database interpretation rou-

tines assume the host is down and indicate such on the status reports. This algo-

rithm is prone to error, as a server may be down while a host is actually up.

Figure 11-3 rwho Server

main (

)

{

sp = getservbyname ("who", "udp")

;

net = getnetbyname ("localnet")

;

sin.sin_addr = inet_makeaddr (INADDR_ANY, net);
sin.sin_port = sp->s_port;

s = socket (AF_INET, SOCK_DGRAM, 0)

;

on = 1;

if (setsockopt (s, SOL_SOCKET, SO_BROADCAST, Son,

sizeof on) < 0) {

syslog (LOG_ERR, "setsockopt SO_BROADCAST : %m");
exit (1)

;

)

bind(s, (struct sockaddr *) &sin, sizeof sin);

signal (SIGALRM, onalrm)

;

onalrm()

;

for <;;) {

struct whod wd;

int cc, whod, len = sizeof from;

cc = recvfrom(s, (char *)&wd, sizeof (struct whod),

0, (struct sockaddr *)&from, &len)

;

if (cc <= 0) {

if (cc < 0 && errno != EINTR)
syslog (LOG_ERR, "rwhod: recv: %m")

;

continue;

}

if (from. sin_j?ort != sp->s_port) {

syslog (LOG_ERR, "rwhod: %d: bad from port",
ntohs (from. sin_joort)) ;

continue;

}

if (! verify (wd. wd_hostname)) {

syslog (LOG_ERR, "rwhod: bad host name from %x",
ntohl (from. sin_addr . s addr))

;

m sun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 301

continue;

}

(void) sprintf (path, "%s/whod. %s", RWHODIR,

wd. wd_hostname)

;

whod = open (path, 0_WR0NLY | 0_CREAT | OJTRUNC, 0666);

(void) time (&wd. wd_recvtime)

;

(void) write (whod, (char *)&wd, cc)

;

(void) close (whod)

;

)

exit (0)

;

The second task performed by the server is to supply information regarding the

status of its host. This involves periodically acquiring system status information,

packaging it up in a message and broadcasting it on the local network for other

rwho servers to hear. The supply function is triggered by a timer and runs off a

signal. Locating the system status information is somewhat involved, but unin-

teresting. Deciding where to transmit the resultant packet is somewhat prob-

lematic, however.

Status information must be broadcast on the local network. For networks that do

not support the notion of broadcast another scheme must be used to simulate or

replace broadcasting. One possibility is to enumerate the known neighbors

(based on the status messages received from other rwho servers). This, unfor-

tunately, requires some bootstrapping information, for a server will have no idea

what machines are its neighbors until it receives status messages from them.

Therefore, if all machines on a net are freshly booted, no machine will have any

known neighbors and thus never receive, or send, any status information. This is

the identical problem faced by the routing table management process in pro-

pagating routing status information. The standard solution, unsatisfactory as it

may be, is to inform one or more servers of known neighbors and request that

they always communicate with these neighbors. If each server has at least one

neighbor supplied to it, status information may then propagate through a neigh-

bor to hosts that are not (possibly) directly neighbors. If the server is able to sup-

port networks that provide a broadcast capability, as well as those which do not,

then networks with an arbitrary topology may share status information14 .

It is important that software operating in a distributed environment not have any

site-dependent information compiled into it. This would require a separate copy

of the server at each host and make maintenance a severe headache. SunOS

attempts to isolate host-specific information from applications by providing sys-

tem calls that return the necessary information 15 . A mechanism exists, in the

form of an ioct 1 () call, for finding the collection of networks to which a host

is directly connected. Further, a local network broadcasting mechanism has been

14 One must, however, be concerned about loops. That is, if a host is connected to multiple networks, it will

receive status information from itself. This can lead to an endless, wasteful, exchange of information.

13 An example of such a system call is the gethostname (2) call that returns the host’s official name.

microsystems

Revision A, of 27 March 1990

302 Transport-Level Programming

11.4. Advanced Topics

Out Of Band Data

implemented at the socket level. Combining these two features allows a process

to broadcast on any directly connected local network which supports the notion

of broadcasting in a site independent manner. This allows a solution to the prob-

lem of deciding how to propagate status information in the case of rwho, or

more generally in broadcasting. Such status information is broadcast to con-

nected networks at the socket level, where the connected networks have been

obtained via the appropriate ioctl () calls. The specifics of such broadcastings

are complex, however, and will be covered in the Advanced Topics section

below.

A number of facilities have yet to be discussed. For most programmers, the

mechanisms already described will suffice in constructing distributed applica-

tions. However, others will find the need to utilize some of the features that we
consider in this section.

The stream socket abstraction includes the notion of out ofband data. Out of

band data is a logically independent transmission channel associated with each

pair of connected stream sockets. Out of band data is delivered to the user

independently of normal data. The abstraction defines that the out of band data

facilities must support the reliable delivery of at least one out of band message at

a time. This message may contain at least one byte of data, and at least one mes-

sage may be pending delivery to the user at any one time. For communications

protocols (such as TCP) that support only in-band signaling (i.e. the urgent data

is delivered in sequence with the normal data), the system normally extracts the

data from the normal data stream and stores it separately. This allows users to

choose between receiving the urgent data in order and receiving it out of

sequence without having to buffer all the intervening data. It is possible to

“peek” (via MSG_PEEK) at out of band data. If the socket has a process group, a

SIGURG signal is generated when the protocol is notified of its existence. A pro-

cess can set the process group or process id to be informed by the SIGURG signal

via the appropriate fcntl () call, as described below for SIGIO. If multiple

sockets may have out of band data awaiting delivery, a select () call for

exceptional conditions may be used to determine those sockets with such data

pending. Neither the signal nor the select indicate the actual arrival of the out-

of-band data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream

to indicate the point at which the out of band data was sent. The remote login

and remote shell applications use this facility to propagate signals between client

and server processes. When a signal flushes any pending output from the remote

process(es), all data up to the mark in the data stream is discarded.

To send an out of band message the MSG_OOB flag is supplied to a send () or

sendto () calls, while to receive out of band data MSG_OOB should be indi-

cated when performing a recvfrom() orrecv() call. To find out if the read

pointer is currently pointing at the mark in the data stream, the SIOCATMARK
ioctl is provided:

ioctl (s, SIOCATMARK, &yes) ;

If yes is 1 on return, the next read will return data after the mark. Otherwise

microsystems
Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 303

(assuming out of band data has arrived), the next read will provide data sent by

the client prior to transmission of the out of band signal. The routine used in the

remote login process to flush output on receipt of an interrupt or quit signal is

shown in the following example. This code reads the normal data up to the mark

(to discard it), then reads the out-of-band byte.

Figure 11-4 Flushing Terminal HO on Receipt ofOut OfBand Data

include <sys/ioctl . h>

include <sys/file.h>

oob (

)

{

int out = FWRITE;

char waste [BUFSIZ]

;

int mark;

/ * flush local terminal output * /

ioctl (1, TIOCFLUSH, (char *)&out);

for (;;) {

if (ioctl (rem, SIOCATMARK, Smark) < 0) {

perror ("ioctl")

;

break;

1

if (mark)

break;
(void) read (rem, waste, sizeof waste);

}

if (recvfrem, Smark, 1, MSG__OOB) < 0) {

perror ("recv")

;

)

}

s. —

A process may also read or peek at the out-of-band data without first reading up

to the mark. This is more difficult when the underlying protocol delivers the

urgent data in-band with the normal data, and only sends notification of its pres-

ence ahead of time (e.g., the TCP protocol used to implement socket streams in

the Internet domain). With such protocols, the out-of-band byte may not yet

have arrived when a recv () is done with the MSG_OOB flag. In that case, the

call will return an error of EWOULDBLOCK. Worse, there may be enough in-

band data in the input buffer that normal flow control prevents the peer from

sending the urgent data until the buffer is cleared. The process must then read

enough of the queued data that the urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle multiple

urgent signals (e.g., telnet(lC)) need to retain the position of urgent data

within the socket stream. This treatment is available as a socket-level option,

SO_OOBINLlNE; see setsockopt (2) for usage. With this option, the

• sun
XT microsystems

Revision A, of 27 March 1990

304 Transport-Level Programming

position of urgent data (the “mark”) is retained, but the urgent data immediately

follows the mark within the normal data stream returned without the MSG_OOB
flag. Reception of multiple urgent indications causes the mark to move, but no

out-of-band data are lost.

Non-Blocking Sockets It is occasionally convenient to make use of sockets that do not block; that is, I/O

requests that cannot complete immediately and would therefore cause the process

to be suspended awaiting completion are not executed, and an error code is

returned. Once a socket has been created via the socket () call, it may be
marked as non-blocking by fcntl () as follows:

#include <fcntl.h>

int s;

s = socket (AF_INET, SOCK_STREAM, 0);

if (fcntl (S, F_SETFL, FNDELAY) < 0)

perror ("fcntl F_SETFL, FNDELAY");
exit (1)

;

}

V x

When performing non-blocking I/O on sockets, one must be careful to check for

the error EWOULDBLOCK (stored in the global variable errno), which occurs

when an operation would normally block, but the socket it was performed on is

marked as non-blocking. In particular, accept(), connect(), send(),

recv(), read(), and write () can all return EWOULDBLOCK, and processes

should be prepared to deal with such return codes. If an operation such as a

send () cannot be done in its entirety, but partial writes are sensible (for exam-
ple, when using a stream socket), the data that can be sent immediately will be

processed, and the return value will indicate the amount actually sent.

Interrupt Driven Socket I/O The SIGIO signal allows a process to be notified via a signal when a socket (or

more generally, a file descriptor) has data waiting to be read. Use of the SiGIO
facility requires three steps: First, the process must set up a SIGIO signal

handler by use of the signal () orsigvecf) calls. Second, it must set the

process id or process group id that is to receive notification of pending input to

its own process id, or the process group id of its process group (note that the

default process group of a socket is group zero). This can be accomplished by

use of an fcntl (

)

call. Third, it must enable asynchronous notification of

pending I/O requests with another fcntl (

)

call. Sample code to allow a given

process to receive information on pending I/O requests as they occur for a socket

s is given in Figure 11 -5 . With the addition of a handler for S IGURG, this code

can also be used to prepare for receipt of S IGURG signals.

•sun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 305

Figure 11-5 Use ofAsynchronous Notification ofI/O Requests

#include <fcntl.h>

int io_handler () ;

signal (SIGIO, io_handler)

;

/ * Set the process receiving SIGIO/SIGURG signals to us. *

/

if (fcntl (s, F SETOWN, getpidO) < 0) {

perror ("fcntl F_SETOWN");
exit (1)

;

}

/ * Allow receipt ofasynchronous HO signals

.

* /

if (fcntl (s, F_SETFL, FASYNC) < 0) {

perror ("fcntl F_SETFL, FASYNC");

exit (1)

;

}

v

Signals and Process Groups Due to the existence of the SIGURG and SIGIO signals each socket has an asso-

ciated process number, just as is done for terminals. This value is initialized to

zero, but may be redefined at a later time with the F_SETOWN fcnt 1(), such as

was done in the code above for SIGIO. To set the socket’s process id for sig-

nals, positive arguments should be given to the fcntl () call. To set the

socket’s process group for signals, negative arguments should be passed to

fcnt 1(). Note that the process number indicates either the associated process id

or the associated process group; it is impossible to specify both at the same time.

A similar fcnt 10. F_GETOWN, is available for determining the current process

number of a socket.

Note that the receipt of SIGURG and SIGIO can also be enabled by using the

ioct 1 () call to assign the socket to the user’s process group:

/ * oobdata is the out-of-band data handling routine * /

signal (SIGURG, oobdata);

int pid = -getpidO;

if (ioctl (client, SIOCSPGRP, (char *)&pid) < 0) {

perror ("ioctl: SIOCSPGRP");

}

«.

Revision A, of 27 March 1990

306 Transport-Level Programming

Another signal that is useful when constructing server processes is S IGCHLD.
This signal is delivered to a process when any child processes have changed
state. Normally servers use the signal to “reap” child processes that have exited

without explicitly awaiting their termination or periodically polling for exit

status. For example, the remote login server loop shown in Figure 11-2 may be

augmented as shown here:

Figure 11-6 Use of the SIGCHLD Signal

int reaper!);

signal (SIGCHLD, reaper);
listen (f, 5);

for (;;) {

int g, len = sizeof from;

g = accept (f, (struct sockaddr *)&from, &len,)

;

if (g < 0) {

if (errno != EINTR)
syslog (LOG_ERR, "rlogind: accept: %m");

continue;

)

}

#include <wait.h>
reaper (

)

{

union wait status;

while (wait3 (Sstatus, WNOHANG, 0) > 0)

continue;

}

V y

Pseudo Terminals

If the parent server process fails to reap its children, a large number of zombie

processes may be created.

Many programs will not function properly without a terminal for standard input

and output. Since sockets do not provide the semantics of terminals, it is often

necessary to have a process communicating over the network do so through a

pseudo-terminal. A pseudo-terminal is actually a pair of devices, master and
slave, which allow a process to serve as an active agent in communication
between processes and users. Data written on the slave side of a pseudo-terminal

are supplied as input to a process reading from the master side, while data written

on the master side are processed as terminal input for the slave. In this way, the

process manipulating the master side of the pseudo-terminal has control over the

information read and written on the slave side as if it were manipulating the key-

board and reading the screen on a real terminal. The purpose of this abstraction

is to preserve terminal semantics over a network connection— that is, the slave

side appears as a normal terminal to any process reading from or writing to it.

microsystems
Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 307

For example, the remote login server uses pseudo-terminals for remote login ses-

sions. A user logging in to a machine across the network is provided a shell with

a slave pseudo-terminal as standard input, output, and error. The server process

then handles the communication between the programs invoked by the remote

shell and the user’s local client process. When a user sends a character that gen-

erates an interrupt on the remote machine that flushes terminal output, the

pseudo-terminal generates a control message for the server process. The server

then sends an out of band message to the client process to signal a flush of data at

the real terminal and on the intervening data buffered in the network.

The name of the slave side of a pseudo-terminal is of the form /dev/ttyxy,

where x is a single letter starting at ‘p’ and continuing to ‘t\ y is a hexadecimal

digit (i.e., a single character in the range 0 through 9 or ‘a’ through ‘f’). The

master side of a pseudo-terminal is /dev/ptyxy , where x and y correspond to

the slave side of the pseudo-terminal.

In general, the method of obtaining a pair of master and slave pseudo-terminals is

to find a pseudo-terminal that is not currently in use. The master half of a

pseudo-terminal is a single-open device; thus, each master may be opened in turn

until an open succeeds. The slave side of the pseudo-terminal is then opened,

and is set to the proper terminal modes if necessary. The process then fork () s;

the child closes the master side of the pseudo-terminal, and exec () s the

appropriate program. Meanwhile, the parent closes the slave side of the pseudo-

terminal and begins reading and writing from the master side. Sample code mak-

ing use of pseudo-terminals is given in the following example. This code

assumes that a connection on a socket s exists, connected to a peer who wants a

service of some kind, and that the process has disassociated itself from any previ-

ous controlling terminal.

Figure 11-7 Creation and Use ofa Pseudo Terminal

gotpty = 0;

for (c = 'p';
! gotpty && c <= 's'; C++) {

line = "/dev/ptyXX";
line[sizeof "/dev/pty" -1] = c;

lineisizeof "/dev/ptyp" -1] = 'O';

if (stat (line, &statbuf) < 0)

break;
for (i = 0; i < 16; i++) {

line[sizeof "/dev/ptyp" -1]

= "0123456789abcdef " [i]

;

master = open (line, 0_RDWR)

;

if (master >= 0) {

gotpty = 1;

break;

}

1

}

if (! gotpty) {

syslog (LOG_ERR, "All network ports in use");

exit (1)

;

sun Revision A, of 27 March 1990
microsystems

308 Transport-Level Programming

linefsizeof "/dev/" -1] = ' t'

;

slave = open (line, 0_RDWR) ; /* slave is now slave side */

if (slave < 0) {

syslog (LOG_ERR, "Cannot open slave pty %s", line);
exit (1) ;

}

ioctl (slave, TIOCGETP, &b) ; /* Set slave tty modes */

b . sg_flags = CRMOD | XTABS | ANYP

;

ioctl (slave, TIOCSETP, &b)

;

i = fork ()

;

if (i < 0) {

syslog (LOG_ERR, "fork: %m");
exit (1) ;

} else if (i) { /* Parent */

close (slave)

;

} else { /* Child */

close (s)

;

close (master)

;

dup2 (slave, 0)

;

dup2 (slave, 1);

dup2 (slave, 2);

if (slave > 2)

close (slave)

;

}

v j

Selecting Specific Protocols If the third argument to the socket () call is 0, socket () will select a default

protocol to use with the returned socket of the type requested. The default proto-

col is usually correct, and alternate choices are not usually available. However,

when using “raw” sockets to communicate directly with lower-level protocols or

hardware interfaces, the protocol argument may be important for setting up
demultiplexing. For example, raw sockets in the Internet domain may be used to

implement a new protocol above IP, and the socket will receive packets only for

the protocol specified. To obtain a particular protocol one determines the proto-

col number as defined within the protocol domain. For the Internet domain one

may use one of the library routines discussed in the Library Routines section

above, such as getprotobynameCk
v

include <sys/types . h>
include <sys/socket . h>
include <netinet/in . h>
include <netdb.h>

pp = getprotobyname ("newtcp") ;

S = socket (AF_INET, SOCK_STREAM, pp->p_proto)

;

v ,

This would result in a socket s using a stream based connection, but with

»sunV microsystems
Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 309

Address Binding

protocol type of “newtcp” instead of the default “tcp.”

As was mentioned in the Basics section, binding addresses to sockets in the Inter-

net domain can be fairly complex. As a brief reminder, these associations are

composed of local and foreign addresses, and local and foreign ports. Port

numbers are allocated out of separate spaces, one for each system and one for

each domain on that system. Through the bind () system call, a process may

specify half of an association, the <local address, local port> part, while the

connect () and accept ()
primitives are used to complete a socket’s associa-

tion by specifying the <foreign address,foreign port> part. Since the associa-

tion is created in two steps the association uniqueness requirement indicated pre-

viously could be violated unless care is taken. Further, it is unrealistic to expect

user programs to always know proper values to use for the local address and local

port since a host may reside on multiple networks and the set of allocated port

numbers is not directly accessible to a user.

To simplify local address binding in the Internet domain the notion of a wildcard

address has been provided. When an address is specified as INADDR_ANY (a

manifest constant defined in cnetinet /in . h>), the system interprets the

address as any valid address. For example, to bind a specific port number to a

socket, but leave the local address unspecified, the following code might be used:

\

#include <sys/types.h>
include <netinet/in.h>

struct sockaddr_in sin;

S = socket (AF_INET, SOCK_STREAM, 0) ;

sin . sin_family = AF_INET;
sin. sin_addr . s_addr = htonl (INADDR_ANY)

;

sin.sin_port = htons (MYPORT)

;

bind(s, (struct sockaddr *) &sin, sizeof sin);

V

Sockets with wildcarded local addresses may receive messages directed to the

specified port number, and sent to any of the possible addresses assigned to a

host. For example, if a host has addresses 128.32.0.4 and 10.0.0.78, and a socket

is bound as above, the process will be able to accept connection requests that are

addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow

hosts on a given network connect to it, it would bind the address of the host on

the appropriate network.

In a similar fashion, a local port may be left unspecified (specified as zero), in

which case the system will select an appropriate port number for it. For example,

to bind a specific local address to a socket, but to leave the local port number

unspecified:

microsystems

Revision A, of 27 March 1990

310 Transport-Level Programming

The system selects the local port number based on two criteria. The first is that

Internet ports below IPPORT_RESERVED (1024) are reserved for privileged

users (i.e., the superuser); Internet ports above IPPORT_userreserved
(50000) are reserved for non-privileged servers. The second is that the port

number is not currently bound to some other socket. In order to find a free Inter-

net port number in the privileged range the rresvport () library routine may
be used as follows to return a stream socket in with a privileged port number:

The restriction on allocating ports was done to allow processes executing in a

“secure” environment to perform authentication based on the originating address

and port number. For example, the rlogin (1) command allows users to log

in across a network without being asked for a password, if two conditions hold:

First, the name of the system the user is logging in from is in the file

/etc/hosts . equiv on the system s/he is logging in to (or the system name
and the user name are in the user’s . rhosts file in the user’s home directory),

and second, that the user’s rlogin process is coming from a privileged port on the

machine from which s/he is logging in. The port number and network address of

the machine from which the user is logging in can be determined either by the

from result of the accept () call, or from the getpeername () call.

In certain cases the algorithm used by the system in selecting port numbers is

unsuitable for an application. This is because associations are created in a two

step process. For example, the Internet file transfer protocol, FTP, specifies that

data connections must always originate from the same local port. However,

duplicate associations are avoided by connecting to different foreign ports. In

this situation the system would disallow binding the same local address and port

number to a socket if a previous data connection’s socket still existed. To over-

ride the default port selection algorithm, an option call must be performed prior

to address binding:

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 311

Broadcasting and
Determining Network

Configuration

int on = 1;

setsockopt (s, SOL_SOCKET, SO_REUSEADDR, Son, sizeof on);

bind(s, (struct sockaddr *) &sin, sizeof sin);

v /

With the above call, local addresses may be bound that are already in use. This

does not violate the uniqueness requirement as the system still checks at connect

time to be sure any other sockets with the same local address and port do not

have the same foreign address and port. If the association already exists, the

error EADDRINUSE is returned.

By using a datagram socket, it is possible to send broadcast packets on many net-

works connected to the system. The network itself must support broadcast; the

system provides no simulation of broadcast in software. Broadcast messages can

place a high load on a network since they force every host on the network to ser-

vice them. Consequently, the ability to send broadcast packets has been limited

to sockets that are explicitly marked as allowing broadcasting. Broadcast is typi-

cally used for one of two reasons: it is desired to find a resource on a local net-

work without prior knowledge of its address, or important functions such as rout-

ing require that information be sent to all accessible neighbors.

To send a broadcast message, a datagram socket should be created:

S = socket (AF_INET, SOCK_DGRAM, 0);

The socket is marked as allowing broadcasting,

int on = 1;

setsockopt (s, SOL_SOCKET, SO_BROADCAST, Son, sizeof on)

;

and at least a port number should be bound to the socket:

/ s

sin. sin_family = AF_INET;
sin. sin_addr . s_addr = htonl (INADDR_ANY)

;

sin. sin_j?ort = htons (MYPORT) ;

bind(s, (struct sockaddr *) &sin, sizeof sin);

v

The destination address of the message to be broadcast depends on the

network(s) on which the message is to be broadcast. The Internet domain sup-

ports a shorthand notation for broadcast on the local network, the address

INADDR_BR0ADCAST (defined in <netinet /in . h>. To determine the list

of addresses for all reachable neighbors requires knowledge of the networks to

which the host is connected. Since this information should be obtained in a

host-independent fashion and may be impossible to derive, SunOS provides a

method of retrieving this information from the system data structures. The

SIOCGIFCONF ioctl call returns the interface configuration of a host in the

form of a single ifcon f structure; this structure contains a “data area” that is

made up of an array of ifreq structures, one for each address domain supported

by each network interface to which the host is connected. These structures are

defined in <net /if

.

h> as follows:

microsystems
Revision A, of 27 March 1990

312 Transport-Level Programming

f

struct ifconf {

int ifc_len;
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc ifcu;

1;

/ * size ofassociated buffer * /

#define ifc buf ifc ifcu. ifcu buf
#define ifc_req ifc_ifcu. ifcu_req

/* buffer address */

/ * array ofstructures returned * /

struct ifreq {

tdefine IFNAMSIZ 16

char ifr_name [IFNAMSIZ] ; /* ifname,e.g."enO" */

union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname [IFNAMSIZ] ; /* other ifname */

short ifru_flags;
char ifru_data [1] ; /* interface dependent data */

} ifr_ifru;

1;

tdefine ifr_addr ifr_ifru. ifru_

tdefine ifr_dstaddr ifr_ifru. if ru_

tdefine ifr_oname ifr_ifru. ifru_

tdefine ifr_flags ifr_ifru. ifru_
tdefine ifr_data ifr_ifru.ifru_

v

_addr /* address */

dstaddr/* other end of link */

oname /* other ifname */

flags /* flags */

_dat a / *for use by interface * /

^

The actual call that obtains the interface configuration is

r
struct ifconf ifc;

char buf [BUFSIZ]

;

A

ifc.ifc_len = sizeof buf;

ifc.ifc_buf = buf;

if (ioctl (s, SIOCGIFCONF, (char *) &if c) < 0) {

}

v J

After this call buf will contain a list of ifreq structures, one for each network to

which the host is connected. These structures will be ordered first by interface

name and then by supported address families, if c . ifc_len will have been

modified to reflect the number of bytes used by the ifreq structures.

For each structure there exists a set of “interface flags” that tell whether the net-

work corresponding to that interface is up or down, point to point or broadcast,

etc. The SIOCGIFFLAGS ioctl retrieves these flags for an interface

specified by an ifreq structure as follows:

#sun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 313

struct ifreq *ifr;

ifr = ifc.ifc_req;

for (n=ifc . ifc_len/sizeof (struct ifreq);
—n >= 0; ifr++) (

/*

* We must be careful that we don’t use an interface

* devoted to an address domain other than those intended;

* ifwe were interested in NS interfaces, the

* AF_INET would be AF_NS.
*/

if (ifr->ifr_addr . sa_family != AF_INET)
continue;

if (ioctl (s, SIOCGIFFLAGS, (char *) ifr) < 0) {

1

/*

* Skip boring cases

*/

if ((ifr->ifr_flags & IFF_UP) == 0 ||

(ifr->ifr_flags & IFF_LOOPBACK)
|

|

(ifr->ifr_flags &

(IFF_BROADCAST
|
IFF_POINTTOPOINT))

== 0)

continue;

V ,

Once the flags have been obtained, the broadcast address must be obtained. In

the case of broadcast networks this is done via the SIOCGIFBRDADDR
ioctl, while for point-to-point networks the address of the destination host is

obtained with SIOCGIfdstaddr.

f
A

struct sockaddr dst;

if (ifr->ifr_flags & IFF_POINTTOPOINT) {

if (ioctl (s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

)

bcopy((char *) ifr->ifr_dstaddr, (char *) &dst.
sizeof ifr->ifr dstaddr) ;

1 else if (ifr->if r_flags & IFF BROADCAST) {

if (ioctl (s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

}

bcopy((char *) ifr->ifr broadaddr. (char *
) &dst,

}

sizeof ifr->ifr_broadaddr) ;

V J

After the appropriate ioct 1 () s have obtained the broadcast or destination

address (now in dst), the sendto () call may be used:

A
microsystems

Revision A, of 27 March 1990

3 14 Transport-Level Programming

Socket Options

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst) ;

In the above loop one sendto () occurs for every interface to which the host is

connected that supports the notion of broadcast or point-to-point addressing. If a

process only wished to send broadcast messages on a given network, code similar

to that outlined above would be used, but the loop would need to find the correct

destination address.

Received broadcast messages contain the sender’s address and port, as datagram

sockets are bound before a message is allowed to go out.

It is possible to set and get a number of options on sockets via the set-

sockoptO and getsockopt () system calls. These options include such

things as marking a socket for broadcasting, not to route, to linger on close, etc.

The general forms of the calls are:

setsockopt (s, level, optname, optval, optlen)

;

and

getsockopt (s, level, optname, optval, optlen);

The parameters to the calls are as follows: s is the socket on which the option is

to be applied, level specifies the protocol layer on which the option is to be

applied; in most cases this is the “socket level”, indicated by the symbolic con-

stant SOL_SOCKET, defined in <sys/ socket .h> . The actual option is

specified in optname, and is a symbolic constant also defined in

<sys / socket . h>. optval and optlen point to the value of the option (in most

cases, whether the option is to be turned on or off), and the length of the value of

the option, respectively. For get sockopt(), optlen is a value-result parameter,

initially set to the size of the storage area pointed to by optval, and modified

upon return to indicate the actual amount of storage used.

An example should help clarify things. It is sometimes useful to determine the

type (e.g., stream, datagram, etc.) of an existing socket; programs invoked by

inetd (described below) may need to perform this task. This can be accom-

plished as follows via the SO_TYPE socket option and the getsockopt (

)

call:

N

include <sys/types . h>

include <sys/socket . h>

int type, size;

size = sizeof (int)

;

if (getsockopt (s, SOL_SOCKET, SO_TYPE, (char *) &type,
&size) < 0) {

1

v ,

After the getsockopt () call, type will be set to the value of the socket type,

#sun
microsystems

Revision A, of 27 March 1990

Chapter 11 — An Advanced Socket-Based Interprocess Communications Tutorial 315

inetd

as defined in <sys/ socket . h>. If, for example, the socket were a datagram

socket, type would have the value corresponding to SOCK_DGRAM.

One of the daemons provided with SunOS is inetd, the so called “Internet

super-server.” inetd is invoked at boot time and determines from the file

/etc/inetd . conf the services for which it is to listen. Once this informa-

tion has been read and a pristine environment created, inetd proceeds to create

one socket for each service it is to listen for, binding the appropriate port number

to each socket.

inetd then performs a select () on all these sockets for read availability,

waiting for somebody wishing a connection to the service corresponding to that

socket, inetd then performs an accept () on the socket in question,

fork () s, dup () s the new socket to file descriptors 0 and 1 (stdin and stdout),

closes other open file descriptors, and exec () s the appropriate server.

Servers making use of inetd are considerably simplified, as inetd takes care

of the majority of the IPC work required in establishing a connection. The server

invoked by inetd expects the socket connected to its client on file descriptors 0

and 1, and may immediately perform any operations such as read(), write(),

send(), or recv(). Indeed, servers may use buffered I/O as provided by the

“stdio” conventions, as long as they remember to use f flush () when appropri-

ate.

One call that may be of interest to individuals writing servers to be invoked by

inetd is the getpeername () call, which returns the address of the peer (pro-

cess) connected on the other end of the socket. For example, to log the Internet

address in “dot notation” (e.g., “128.32.0.4”) of a client connected to a server

under inetd, the following code might be used:

struct sockaddr_in name;

int namelen = sizeof name;

if (getpeername (0,

(struct sockaddr *) Sname, Snamelen) < 0) {

syslog (LOG_ERR, "getpeername: %m");
exit (1) ;

} else
syslog (LOG_INFO f "Connection from %s",

inet ntoa (name . sin addr)) ;

While the getpeername () call is especially useful when writing programs to

run with inetd, it can be used under other circumstances. Be warned, however,

that getpeername will fail on UNIX domain sockets.

microsystems
Revision A, of 27 March 1990

316 Transport-Level Programming

#sun
microsystems

Revision A, of 27 March 1990

12

Socket-Based IPC Implementation

Notes

This chapter describes the internal structure of the socket-based networking facil-

ities originally developed for the 4.2BSD version of the UNIX system and subse-

quently integrated into SunOS. These facilities are based on several central

abstractions that structure and unify the external (user) view of network com-

munication as well as the internal (system) implementation. In addition, the

implementation introduces a structure for network communications that may be

used by system implementors in adding new networking facilities. The internal

structure is not visible to the user, rather it is intended to aid implementors of

communication protocols and network services by providing a framework that

promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and sys-

tem interface, as described in the System Services Overview. Basic understand-

ing of network communication concepts is assumed; where required any addi-

tional ideas are introduced.

The remainder of this document provides a description of the system internals,

avoiding, when possible, overlap with the interprocess communication tutorials.

Overview If we consider the International Standards Organization’s (ISO) Open System

Interconnection (OSI) model of network communication [IS081] [Zimmer-

mann80], the networking facilities described here correspond to a portion of the

session layer, all of the transport and network layers, and some datalink layers.

The network layer provides possibly imperfect data transport services with

minimal addressing structure. Addressing at this level is normally host to host,

with implicit or explicit routing optionally supported by the communicating

agents.

At the transport layer the notions of reliable transfer, data sequencing, flow con-

trol, and service addressing are normally included. Reliability is usually

managed by explicit acknowledgement of data delivered. Failure to ack-

nowledge a transfer results in retransmission of the data. Sequencing may be

handled by tagging each message handed to the network layer by a sequence

number and maintaining state at the endpoints of communication to utilize

received sequence numbers in reordering data that arrives out of order.

The session layer facilities may provide forms of addressing that are mapped into

formats required by the transport layer, service authentication and client

microsystems
317 Revision A, of 27 March 1990

318 Transport-Level Programming

authentication, etc. Various systems also provide services such as data encryp-

tion and address and protocol translation.

The following sections begin by describing some of the common data structures

and utility routines, then examine the internal layering. The contents of each

layer and its interface are considered. Certain of the interfaces are protocol

implementation specific. For these cases examples have been drawn from the

Internet [Cerf78] protocol family. Later sections cover routing issues, the design

of the raw socket interface, and other miscellaneous topics.

Goals The networking system was designed with the goal of supporting multiple proto-

colfamilies and addressing styles. This required information to be “hidden” in

common data structures that could be manipulated by all the pieces of the sys-

tem, but that required interpretation only by the protocols that “controlled” it.

The system described here attempts to minimize the use of shared data structures

to those kept by a suite of protocols (a protocolfamily), and those used for ren-

dezvous between “synchronous” and “asynchronous” portions of the system (e.g.

queues of data packets are filled at interrupt time and emptied based on user

requests).

A major goal of the system was to provide a framework within which new proto-

cols and hardware could be easily be supported. To this end, a great deal of

effort has been extended to create utility routines that hide many of the more

complex and/or hardware dependent chores of networking. Later sections

describe the utility routines and the underlying data structures they manipulate.

12.1. Memory, Addressing

Address Representation Common to all portions of the system are two data structures. These structures

are used to represent addresses and various data objects. Addresses are internally

described by the sockaddr structure,

r

struct sockaddr {

\

short sa_family; /* addressfamily * /

char

} ;

V

sa_data [14]

;

/ * up to 14 bytes of direct address * /

/

All addresses belong to one or more addressfamilies which define their format

and interpretation. The sa_family field indicates the address family to which

the address belongs, and the sa_data field contains the actual data value. The

size of the data field, 14 bytes, was selected based on a study of current address

formats. Specific address formats use private structure definitions that define the

format of the data field. The system interface supports larger address structures,

although address-family-independent support facilities, for example routing and

raw socket interfaces, provide only 14 bytes for address storage. Protocols that

do not use those facilities (e.g, the current UNIX domain) may use larger data

areas.
16

16 Later versions of the system may support variable length addresses.

&sun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-B ased IPC Implementation Notes 319

Memory Management A single structure is used for data storage— the memory buffer, or “mbuf
There are three kinds of mbufs— “small”, “cluster”, and “loaned”. They differ

in the policies and mechanisms by which their associated storage is allocated and

managed.

Small mbufs

Small mbufs are the fundamental type and are used both on their own and as

building blocks for cluster and loaned mbufs. They contain their own
storage in the array (see below) named m_dat. That array is defined as con-

taining 112 (mlen) bytes, so that’s all the data that a small mbuf can hold.

Small mbufs are guaranteed to start on a 128-byte boundary. The dtom
macro, described below, works correctly only with small mbufs— mistaken

attempts to use dtom with cluster and loaned mbufs are a common source of

insidious error.

Cluster mbufs

Cluster mbufs support the storage and sharing of larger amounts of data.

They do so by dynamically allocating storage, as necessary, from a pool of

fixed-sized buffers called clusters. These clusters, each of which is

MCLBYTES (IK) in size, are managed by the mbuf system itself. The mbuf
system uses a small mbuf to refer to a given cluster by setting its m_off
field to refer to a location in the interior (most commonly, the beginning) of

the cluster. This combination of a small mbuf and a cluster is what consti-

tutes a cluster mbuf.

Cluster mbufs can be shared because clusters are reference-counted. The

routine mcldup () arranges to share an existing cluster mbuf by increasing

its reference count and attaching a new small mbuf to it. Cluster mbufs

always have their m_cltype field set to MCL_STATIC.

Loaned mbufs

Loaned mbufs provide for treating storage not directly managed by the mbuf
system in the same way as normal mbufs. The mbuf system uses small

mbufs to store bookkeeping information about loaned mbufs, as it does with

cluster mbufs. With loaned mbufs, however, storage is provided by the allo-

cator, who is ultimately responsible of freeing it as well. To allocate a

loaned mbuf, one calls mclgetxO. which takes as arguments the address of

the buffer to be loaned, its length, a pointer to a function, and an argument to

be passed to that function when it’s called. This function is called when the

loaned mbuf is freed, and must do whatever is necessary to clean up the

loaned buffer. The m_clfun and m_clarg fields of the mbuf structure

record the pointer to this function and its argument. Loaned mbufs have

Revision A, of 27 March 1990

320 Transport-Level Programming

their m_cltype field set to MCL_LOANED.

An mbuf structure has the form:

#define MSIZE 128

#define MMINOFF 12

define MTAIL 4

define MLEN (MSIZE-MMINOFF-MTAIL)

struct mbuf
struct
u_long
short
short
union {

{

mbuf *m_next;
m_off

;

m_len;
m_type

;

/ * next buffer in chain * /

/* offset ofdata * /

/ * amount ofdata in this mbuf * /

/* mbuf type (0 ==free) * /

u_char mun_dat [MLEN] ; /* data storage* /

struct {

short mun_cltype; /
*"

cluster" type*

/

int (*mun_clfun) ();

int mun_clarg;
int (*mun_clswp) ();

} mun cl;

} m_un;
struct mbuf *m_act; /* link in higher-level mbuf list * /

define m_dat m_un.mun_dat
define m_cltype m_un.mun_cl .mun_cltype
define m_clfun m_un.mun_cl ,mun_clfun
define m_clarg m_un . mun_cl . mun_clarg

1 ;

The m_next field is used to chain mbufs together on linked lists, while the

m_act field allows lists of mbuf chains to be accumulated. By convention, the

mbufs common to a single object (for example, a packet) are chained together

with the m_next field, while groups of objects are linked via the m_act field

(possibly when in a queue).

The m_len field indicates the amount of data, while the m_of f field is an offset

to the beginning of the data from the base of the mbuf. Thus, for example, the

macro mtod(), which converts a pointer to an mbuf to a pointer to the data stored

in the mbuf, has the form

define mtod(x,t) ((t) ((int) (x) + (x) ->m_off)

)

(note the t parameter, a C type cast, which is used to cast the resultant pointer for

proper assignment). Since a small mbuf’s data always resides in the mbuf’s own
m_dat array, its m_of f value is always less than MSIZE. On the other hand,

storage for cluster and loaned mbufs is external to the mbufs themselves, so their

m_of f values are always at least MSIZE. The M_HASCL macro distinguishes

these two cases and is defined as

define M_HASCL (m) ((m) ->m_of f >= MSIZE)

As mentioned above, the dtom macro is safe to use only if M_HASCL evaluates

false.

sun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 32

1

The following routines and macros may be used to allocate and free mbufs:

m = m_get(wait, type);
MGET (m, wait, type);

The subroutine m_get () and the macro MGET () each allocate an mbuf,

placing its address in m. The argument wait is either M_WAIT or

M_D0NTWAIT according to whether allocation should block or fail if no

mbuf is available. The type is one of the predefined mbuf types for use in

accounting of mbuf allocation.

MCLGET (m)

;

This macro attempts to allocate an mbuf cluster to associate with the mbuf

m. If successful, the length of the mbuf is set to MCLS IZE. The routine

mclget () is similar, but returns success/failure.

mclgetxffun, arg, addr, len, wait)

This routine wraps the storage defined by addr and len with an

MCL_LOANED mbuf. Thefun argument gives a function to be called when

the resulting loaned mbuf is freed, and arg is a value that will be supplied to

that function as its argument. The argument wait is either m_wait or

M_D0NTWAIT according to whether allocation should block or fail if no

mbuf is available.

mcldup (m, n, off);

A duplicator for cluster and loaned mbufs, which duplicates m into n. Ifm is

a cluster mbuf, mcldup () simply bumps its reference count and ignores

off. But ifm is a loaned mbuf, mcldup () allocates a chunk of memory and

copies it, starting at offset off.

n = m_free (m)

;

MFREE (m, n)

;

The routine m_free () and the macro mfree () each free a single mbuf,

m, and any associated external storage area, placing a pointer to its successor

in the chain it heads, if any, in n.

m_freem(m)

;

This routine frees an mbuf chain headed by m.

By insuring that mbufs always reside on 128 byte boundaries, it is always possi-

ble to locate the mbuf associated with a data area by masking off the low bits of

the virtual address. This allows modules to store data structures in mbufs and

pass them around without concern for locating the original mbuf when it comes

time to free the structure. Note that this works only with objects stored in the

internal data buffer of the mbuf. The dtom macro is used to convert a pointer

into an mbuf’s data area to a pointer to the mbuf,

fdefine dtom(x) ((struct mbuf *) ((int)x & ~ (MSIZE-1))

)

Mbufs are used for dynamically allocated data structures such as sockets as well

as memory allocated for packets and headers. Statistics are maintained on mbuf
usage and can be viewed by users using the netstat ()

program. The follow-

ing utility routines are available for manipulating mbuf chains:

Revision A, of 27 March 1990sun

322 Transport-Level Programming

m = m_copy(mO, off, len);
The m_copy () routine create a copy of all, or part, of a list of the mbufs in

mO. len bytes of data, starting offbytes from the front of the chain, are

copied. Where possible, reference counts are manipulated in preference to

core to core copies. The original mbuf chain must have at least off + len

bytes of data. If len is specified as MjCOPYALL, all the data present, offset

as before, is copied.

m_cat (m, n) ;

The mbuf chain, n, is appended to the end of m. Where possible, compac-

tion is performed.

m_cpytoc (m, off, len, cp)

Copies a part of the contents of the mbufm to the contiguous memory
pointed to by cp, skipping the first offbytes and copying the next len bytes.

It returns the number of bytes remaining in the mbuf following the portion

copied, m is left unaltered.

m_adj (m, dif f)

;

The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative,

diffbytes are shaved off the front of the mbuf chain. If diff is, negative, the

alteration is performed from back to front. No space is reclaimed in this

operation; alterations are accomplished by changing the mjen and m_off

fields of mbufs.

m = m_j?ullup (mO , size);
After a successful call to m_pullupO. the mbuf at the head of the returned

list, m, is guaranteed to have at least size bytes of data in contiguous memory
within the data area of the mbuf (allowing access via a pointer, obtained

using the mtod () macro, and allowing the mbuf to be located from a

pointer to the data area using dtom, defined below). If the original data was

less than size bytes long, len was greater than the size of an mbuf data area

(1 12 bytes), or required resources were unavailable, m is 0 and the original

mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on

reception. For example, if a packet is received and only 8 of the necessary

16 bytes required for a valid packet header are present at the head of the list

of mbufs representing the packet, the remaining 8 bytes may be “pulled up”

with a single m_pullup () call. If the call fails the invalid packet will

have been discarded.

12.2. Internal Layering The internal structure of the network system is divided into three layers. These

layers correspond to the services provided by the socket abstraction, those pro-

vided by the communication protocols, and those provided by the hardware inter-

faces. The communication protocols are normally layered into two or more indi-

vidual cooperating layers, though they are collectively viewed in the system as

one layer providing services supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the

interfaces to which each must conform.

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 323

Socket Layer The socket layer deals with the interprocess communication facilities provided

by the system. A socket is a bidirectional endpoint of communication which is

“typed” by the semantics of communication it supports. For more information

about the system calls used to manipulate sockets, see A Socket-Based. Interpro-

cess Communications Tutorial and An Advanced Socket-Based Interprocess

Communications Tutorial, both sections ofNetwork Programming.

A socket consists of the following data structure:

struct socket {

short so_type; /* generic type, see socket.h * /

short so_options; / * from socket call * /

short so_linger; / * time to linger while closing * /

short so state; /* internal state flags SS_*, below * /

caddr_t so_pcb; / * protocol control block * /

struct protosw *so_proto; / * protocol handle * /

/*

* Variablesfor connection queueing. A socket where accepts occur is so_head
* in all subsidiary sockets. If so_head is 0, the socket is not related to an

* accept. For head socket so_qO queues partially completed connections, while

* so_q is a queue ofconnections ready to be accepted. Ifa connection is

* aborted and it has so_head set, then it has to be pulled out of either

* so_qO or so_q. We allow connections to queue up based on current

* queue lengths and limit on number ofqueued connectionsfor this socket.

*1

struct socket *so_head; / * back pointer to accept socket * /

struct socket *so_q0; / * queue ofpartial connections * /

struct socket *so_q; /* queue ofincoming connections * /

short so_q01en; / * partials on so_qO * /

short so_qlen; /* number of connections on so_q */

short so_qlimit; / * max # ofqueued connections * /

short so_timeo; / * connection timeout * /

u_short so_error; / * error affecting connection * /

short so_pgrp; / * pgrpfor signals * /

u_short so oobmark; / * chars to oob mark * /

Variablesfor socket buffering.
1

struct sockbuf so rev; / * receive buffer * /

struct sockbuf so_snd; / * send buffer * /

/*

* Hooksfor alternative wakeup strategies.

* These are used by kernel subsystems wishing to access the socket

* abstraction. If so_wupfunc is nonnull, it is called in place of

* wakeup any time that wakeup would otherwise be called with an

* argument whose value is an address lying within a socket structure.

*/

struct wupalt. *so_wupalt;

In-

struct wupalt {

int (*wup_func) () ; / * function to call instead ofwakeup * /

caddr_t wup_arg; /* argumentfor so_wupfunc */

sue
microsystems

Revision A, of 27 March 1990

324 Transport-Level Programming

/* Other state information here, e.g. for a stream
A

* connected to a socket

*1

1;

V

Each socket contains two send and receive data queues, so_rcv and so_snd
(see below for a discussion), as well as protocol information, private data, error

information and pointers to routines which provide supporting services.

The type of the socket, so_type is defined at socket creation time and used in

selecting those services that are appropriate to support it The supporting proto-

col is selected at socket creation time and recorded in the socket data structure

for later use. Protocols are defined by a table of procedures, the protosw struc-

ture, which will be described in detail later. A pointer to a protocol-specific data

structure, the “protocol control block,” is also present in the socket structure.

Protocols control this data structure, which normally includes a back pointer to

the parent socket structure to allow easy lookup when returning information to a

user (for example, placing an error number in the so_error field). Other

entries in the socket structure are used in queuing connection requests, validating

user requests, storing socket characteristics (e.g. options supplied at the time a

socket is created), and maintaining a socket’s state.

Processes “rendezvous at a socket” in many instances. For instance, when a pro-

cess wishes to extract data from a socket’s receive queue and it is empty, or lacks

sufficient data to satisfy the request, the process blocks, supplying the address of

the receive queue as a “wait channel’ to be used in notification. When data

arrives for the process and is placed in the socket’s queue, the blocked process is

identified by the fact it is waiting “on the queue.”

Socket State A socket’s state is defined from the following:

#define ss._NOFDREF 0x001 / * no file table refany more * /

tdefine ss-
_ISCONNECTED 0x002 / * socket connected to a peer * /

#define ss._I SCONNECTING 0x004 / *in process of connecting to peer* /

#define ss._I SD I SCONNECTING 0x008 / * in process ofdisconnecting * /

tdefine ss._CANTSENDMORE 0x010 / * can't send more data to peer * /

tdefine ss..CANTRCVMORE 0x020 /* can't take more datafrom peer * /

tdefine ss._RCVATMARK 0x040 / * at mark on input * /

tdefine ss._PRIV 0x080 / * privileged * /

tdefine ss._NBIO 0x100 / * non-blocking ops * /

#define ss. ASYNC 0x2 00 / * async Ho notify * /

/

The state of a socket is manipulated both by the protocols and the user (through

system calls). When a socket is created, the state is defined based on the type of

socket. It may change as control actions are performed, for example connection

establishment. It may also change according to the type of input/output the user

wishes to perform, as indicated by options set with f cntl(). “Non-blocking”

I/O implies that a process should never be blocked to await resources. Instead,

any call that would block returns prematurely with the error EWOULDBLOCK, or

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 325

Socket Data Queues

the service request (e.g. a request for more data than is present) may be only par-

tially fulfilled.

If a process requested “asynchronous” notification of events related to the socket,

the SIGIO signal is posted to the process when such events occur. An event is a

change in the socket’s state; examples of such occurrences are space becoming

available in the send queue, new data available in the receive queue, connection

establishment or disestablishment, etc.

A socket may be marked “privileged” if it was created by the super-user. Only

privileged sockets may bind addresses in privileged portions of an address space

or use “raw” sockets to access lower levels of the network.

A socket’s data queue contains a pointer to the data stored in the queue and other

entries related to the management of the data. The structure of a data queue,

struct sockbuf, is:

f

struct sockbuf {

u short sb cc; / * actual chars in buffer * /

u short sb hiwat; / * max actual char count * /

u short sb mbent; / * chars ofmbufs used * /

u short sb mbmax; / * max chars ofmbufs to use * /

u short sb lowat; / * low water mark (not used yet) * /

struct mbuf *sb mb; /* the mbuf chain * /

struct proc *sb_sel; / * process selecting readlwrite * /

short sb timeo; /* timeout (not used yet) * /

short sb_flags; / * flags, see below * /

} so rev, so snd;

V J

Data is stored in a queue as a chain of mbufs. The actual count of data characters

as well as high and low water marks are used by the protocols in controlling the

flow of data. The amount of buffer space (characters of mbufs and associated

data clusters) is also recorded along with the limit on buffer allocation. The

socket routines cooperate in implementing the flow control policy by blocking a

process when it requests to send data and the high water mark has been reached,

or when it requests to receive data and less than the low water mark is present

(assuming non-blocking I/O has not been specified).
17

A socket queue has a number of flags used in synchronizing access to the data

and in acquiring resources:

define SB_MAX 65535
define SB_LOCK 0x01

define SB_WANT 0x02

define SB_WAIT 0x04

define SB_SEL 0x08

define SB COLL 0x10

/ * max chars in sockbuf * /

/* lock on data queue (so_rcv only)* /

/ * someone is waiting to lock * /

/ * someone is waitingfor data!space * /

/ * buffer is selected * /

/ * collision selecting * /

17 The low-water mark is always presumed to be 0 in the current implementation.

f#sunV microsystems

Revision A, of 27 March 1990

326 Transport-Level Programming

Socket Connection Queuing

Protocol Layer(s)

The last two flags are manipulated by the system in implementing the select

mechanism.

When a socket is created, the supporting protocol “reserves” space for the send

and receive queues of the socket. The limit on buffer allocation is set somewhat
higher than the limit on data characters to account for the granularity of buffer

allocation. The actual storage associated with a socket queue may fluctuate dur-

ing a socket’s lifetime, but it is assumed that this reservation will always allow a

protocol to acquire enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in imple-

menting various portions of the interprocess communications facilities and will

not be described here.

Data queued at a socket is stored in one of two styles. Stream-oriented sockets

queue data with no addresses, headers or record boundaries. The data are in

mbufs linked through the m_next field. Buffers containing access rights may be
present within the chain if the underlying protocol supports passage of access

rights. Record-oriented sockets, including datagram sockets, queue data as a list

of packets; the sections of packets are distinguished by the types of the mbufs
containing them. The mbufs that comprise a record are linked through the

m_next field; records are linked from the m_act field of the first mbuf of one
packet to the first mbuf of the next. Each packet begins with an mbuf containing

the “from” address if the protocol provides it, then any buffers containing access

rights, and finally any buffers containing data. If a record contains no data, no
data buffers are required unless neither address nor access rights are present.

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two ends

are considered distinct. One end is termed active, and generates connection

requests. The other end is called passive and accepts connection requests.

From the passive side, a socket is marked with SO_ACCEPTCONN when a

listen () call is made, creating two queues of sockets: so_qO for connections

in progress and so_q for connections already made and awaiting user accep-

tance. As a protocol is preparing incoming connections, it creates a socket struc-

ture queued on so_qO by calling the routine sonewconn(). When the connec-

tion is established, the socket structure is then transferred to so_q, making it

available for an accept 0-

If an SO_ACCEPTCONN socket is closed with sockets on either so_qO or so q,

these sockets are dropped, with notification to the peers as appropriate.

Each socket is created in a communications domain, which usually implies both

an addressing structure (address family) and a set of protocols that implement
various socket types within the domain (protocol family). Each domain is

defined by the following structure:

©sun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 327

struct domain
int

char
int
int

int
struct
struct

{

dom_family ; / * PF_xxx * /

*dom_name;
(*dom_init) () ; / * initialize domain structures * /

(*dom_externalize) (.);/* externalize access rights *

/

(*dom_dispose) (); /*dispose ofinternalized rights* /

protosw *dom_protosw, *dom_protoswNPROTOSW;
domain *dom next;

}

;

At boot time, each domain configured into the kernel is added to a linked list of

domains. The initialization procedure of each domain is then called. After that

time, the domain structure is used to locate protocols within the protocol family.

It may also contain procedure references for extemalization of access rights at the

receiving socket and the disposal of access rights that are not received.

Protocols are described by a set of entry points and certain socket-visible charac-

teristics, some of which are used in deciding which socket type(s) they may sup-

port.

An entry in the “protocol switch” table exists for each protocol module

configured into the system. It has the following form:

r

struct protosw {

A

short pr type; / * socket type usedfor * /

struct domain *pr domain; / * domain protocol a member of* /

short pr_protocol; / * protocol number * /

short pr flags; / * socket visible attributes * /

/ * protocol-protocol hooks * /

int (*pr_input) () ; / * input to protocol (from below) *
/

int (*pr_output) ()

;

/ * output to protocol (from above) * /

int (*pr ctlinput) (); / * control input (from below) * /

int (*pr_ctloutput) (); /* control output (from above)* 1

/ * user-protocol hook * /

int (*pr_usrreq) ()

;

/ * user request * /

/ * utility hooks * /

int (*pr init) ()

;

/ * initialization routine * /

int (*pr fasttimo) (); / * fast timeout (200ms) * /

int (*pr slowtimo) ()

;

/ * slow timeout (500ms) * /

int

}

;

v

(*pr_drain) {) ; / * flush any excess space possible * /

J

A protocol is called through the pr_init entry before any other. Thereafter it

is called every 200 milliseconds through the pr_fastt imo entry and every

500 milliseconds through the pr_slowtimo for timer based actions. The sys-

tem will call the pr_drain entry if it is low on space and this should throw

away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the

pr_input() and pr_output () routines. pr_input() passes data up

Revision A, of 27 March 1990

328 Transport-Level Programming

(towards the user) and pr_output ()
passes it down (towards the network);

control information passes up and down on pr_ctl input () and

pr_ctloutput (). The protocol is responsible for the space occupied by any

of the arguments to these entries and must either pass it onward or dispose of it.

(On output, the lowest level reached must free buffers storing the arguments; on

input, the highest level is responsible for freeing buffers.)

The pr_usrreq () routine interfaces protocols to the socket code and is

described below.

The pr_f lags field is constructed from the following values:

/

define p R__ATOMIC 0x01
>

/ * exchange atomic messages only *
/

tdefine pR__ADDR 0x02 / * addresses given with messages * /

#define pR_ CONNREQUIRED 0x04 / * connection required by protocol * /

tdefine pR WANTRCVD 0x08 / * want PRU RCVD calls * /

define
V

pR_ RIGHTS 0x10 / * passes capabilities * /

>

Protocols that are connection-based specify the PR_CONNREQUIRED flag so

that the socket routines will never attempt to send data before a connection has

been established. If the PR_WANTRCVD flag is set, the socket routines will

notify the protocol when the user has removed data from the socket’s receive

queue. This allows the protocol to implement acknowledgement on user receipt,

and also update windowing information based on the amount of space available

in the receive queue. The PR_ADDR field indicates that any data placed in the

socket’s receive queue will be preceded by the address of the sender. The
PR_AT0MIC flag specifies that each user request to send data must be performed

in a single protocol send request; it is the protocol’s responsibility to maintain

record boundaries on data to be sent. The PR_RIGHTS flag indicates that the

protocol supports the passing of capabilities; this is currently used only by the

protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table for the

domain looking for an appropriate protocol to support the type of socket being

created. The pr_type field contains one of the possible socket types (e.g.

SOCK_STREAM), while the pr_domain is a back pointer to the domain struc-

ture. The pr_protocol field contains the protocol number of the protocol,

normally a well-known value.

Network-Interface Layer Each network-interface configured into a system defines a path through which
packets may be sent and received. Normally a hardware device is associated

with this interface, though there is no requirement for this (for example, all sys-

tems have a software “loopback” interface used for debugging and performance

analysis). In addition to manipulating the hardware device, an interface module
is responsible for encapsulation and decapsulation of any link-layer header infor-

mation required to deliver a message to its destination. The selection of which
interface to use in delivering packets is a routing decision carried out at a higher

level than the network-interface layer. An interface may have addresses in one or

more address families. The address is set at boot time using an ioctl () on a

socket in the appropriate domain; this operation is implemented by the protocol

4Nun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 329

family, after verifying the operation through the device ioct 1 () entry.

An interface is defined by the following structure,

(

struct ifnet {

char *if name; / * name, e.g. "en" or “lo" * /

short if unit; / * sub-unitfor lower level driver * /

short if mtu; / * maximum transmission unit * /

short if flags; /* up!down, broadcast, etc. * /

short if timer; /* time 'til if watchdog called * /

u short if_promisc; / * # ofrequestsfor promiscuous mode * /

int if metric; /* routing metric (external only) * /

struct ifaddr *if_addrlist
struct ifqueue {

struct mbuf *ifq_head;
struct mbuf *ifq_tail;
int if<q_len;

int ifq_maxlen;
int ifq_drops;

; / * linked list ofaddresses per if* /

} if snd; / * output queue * /

/* procedure handles * /

int (*if init) ()

;

/* init routine * /

int (*if_output) (); /* output routine * /

int (*if ioctl) (); /* ioctl routine * /

int (*if reset) ()

;

/ * bus reset routine * /

int (*if watchdog) (); / * timer routine * /

/* generic interface statistics * /

int if_ipackets; / * packets received on interface * /

int if ierrors; / * input errors on interface * /

int if opackets; / * packets sent on interface * /

int if oerrors; / * output errors on interface * /

int if collisions; / * collisions on csma interfaces * /

/* end statistics */

struct ifnet *if next;

struct ifnet *if_upper; / * next layer up * /

struct ifnet *if lower; / * nerl layer down * /

int (*if_input) (); / * inpur routine * /

int (*if ctlin) ()

;

/ * control input routine * /

int (*if_ctlout) (); / * control output routine * /

#ifdef sun
struct map *if memmap; /* rmapfor interface specific memory * /

#endif

> ;

V

Each interface address has the following form:

/

struct ifaddr {

struct
union {

sockaddr ifa_addr ; / * address of interface * /

struct sockaddr ifu broadaddr;
struct

} ifa_ifu;
V

sockaddr ifu_dstaddr;

J

sen
microsystems

Revision A, of 27 March 1990

330 Transport-Level Programming

struct ifnet *ifa_ifp; /* back-pointer to interface * /

struct ifaddr *ifa_next; /* next addressfor interface * /

} ;

define ifa_broadaddr ifa_ifu . ifu_broadaddr /*brdcast address* /

define ifa_dstaddr ifa_ifu. ifu_dstaddr /* other end of link* /

v ,

The protocol generally maintains this structure as part of a larger structure con-

taining additional information concerning the address.

Each interface has a send queue and routines used for initialization (if_init),
input (if_input), and output (if_output). If the interface resides on a sys-

tem bus, the routine if_reset will be called after a bus reset has been per-

formed. An interface may also specify a timer routine, if_watchdog; if

if_t imer is non-zero, it is decremented once per second until it reaches zero,

at which time the watchdog routine is called.

The state of an interface and certain characteristics are stored in the if_flags
field. The following values are possible:

(

#define IFF__Up 0x1

\

/* interface is up */
define IFF BROADCAST 0x2 / * broadcast is possible * /

define IFF__DEBUG 0x4 / * turn on debugging * /

define IFF__LOOPBACK 0x8 / * is a loopback net * /

define IFF__POINTOPOINT 0x10 / * interface is point-to-point link * /

define IFF__NOTRAILERS 0x20 / *avoid use of trailers * /

define IFF_ RUNNING 0x40i / * resources allocated * /

define IFF__NOARP 0x80 1* no address resolution protocol * /

define IFF__PROMISC 0x100 /* receive all packets * /

define
v

IFF__ALLMULTI 0x200 / * receive all multicast packets * /

-

If the interface is connected to a network that supports transmission of broadcast

packets, the IFF_BROADCAST flag will be set and the ifa_broadaddr field

will contain the address to be used in sending or accepting a broadcast packet. If

the interface is associated with a point-to-point hardware link (for example,

Sunlink/INR), the IFF_POlNTOPOINT flag will be set and ifa_dstaddr
will contain the address of the host on the other side of the connection. These

addresses and the local address of the interface, if_addr, are used in Altering

incoming packets. The interface sets IFF_RUNNING after it has allocated sys-

tem resources and posted an initial read on the device it manages. This state bit

is used to avoid multiple allocation requests when an interface’s address is

changed. The IFF_N0TRAILERS flag indicates the interface should refrain

from using a trailer encapsulation on outgoing packets, or (where per-host nego-

tiation of trailers is possible) that trailer encapsulations should not be requested;

trailer protocols are described in section 14. The IFF_N0ARP flag indicates the

interface should not use an “address resolution protocol” in mapping internet-

work addresses to local network addresses. The IFF_PR0MISC bit is set when
the interface is in promiscuous mode, indicating that it should receive all incom-

ing packets regardless of their intended destination.

Various statistics are also stored in the interface structure. These may be viewed
by users using the net stat (1)

program.

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 331

The interface address and flags may be set with the S IOCS IFADDR and S IOC-
SIFFLAGS ioctls. SIOCSIFADDR is used initially to define each

interface’s address; SIOGSIFFLAGS can be used to mark an interface down and

perform site-specific configuration. The destination address of a point-to-point

link is set with SIOCSIFDSTADDR. Corresponding operations exist to read

each value. Protocol families may also support operations to set and read the

broadcast address. The SIOCADDMULT I and SCIODELMULTI ioctls may
be used to add and remove multicast addresses from the set that the interface

accepts. In addition, the SIOCGIFCONF ioct 1 retrieves a list of interface

names and addresses for all interfaces and address families on the host.

12.3. Socket/Protocol The interface between the socket routines and the communication protocols is

Interface through the pr_usrreq() routine defined in the protocol switch table. The

following requests to a protocol module are possible:

r

define PRU ATTACH 0

\

/ * attach protocol * /

tdefine PRU DETACH 1 / * detach protocol * /

#define PRU BIND 2 / * bind socket to address * /

#define PRU LISTEN 3 / * listenfor connection * /

tdefine PRU CONNECT 4 / * establish connection to peer * /

#define PRU_ACCEPT 5 /* accept connectionfrom peer * /

#define PRU_DISCONNECT 6 / * disconnectfrom peer * /

tdefine PRU SHUTDOWN 7 / * won’ t send any more data * /

tdefine PRU RCVD 8 / * have taken data; more room now * /

tdefine PRU SEND 9 / * send this data * /

tdefine PRU_ABORT 10 /* abort (fast DISCONNECT, DETATCH) */

tdefine PRU_CONTROL 11 / * control operations on protocol * /

tdefine PRU SENSE 12 / * return status into m * /

tdefine PRU RCVOOB 13 /* retrieve out ofband data * /

tdefine PRU SENDOOB 14 / * send out ofband data * /

tdefine PRU SOCKADDR 15 / * fetch socket’s address * /

tdefine PRU PEERADDR 16 / * fetch peer's address * /

tdefine PRU CONNECT2 17 / * connect two sockets * /

/ * beginfor protocol's internal use * /

tdefine PRU FASTTIMO 18 / * 200ms timeout * /

tdefine PRU SLOWTIMO 19 / * 500ms timeout * /

tdefine PRU PROTORCV 20 / * receivefrom below * /

define
V

PRU_PROTOSEND 21 /* send to below */

J

A call on the user request routine is of the form,

\

error = (*protosw [] .
pr_usrreq) (so, req, m, addr, rights);

int error;
struct socket *so; int req;

struct mbuf *m, *addr, *rights;

< ,

The mbuf data chain m is supplied for output operations and for certain other

operations where it is to receive a result. The address addr is supplied for

address-oriented requests such as PRU_BIND and PRU_CONNECT. The rights

parameter is an optional pointer to an mbuf chain containing user-specified

A>sun
microsystems

Revision A, of 27 March 1990

332 Transport-Level Programming

capabilities (see the sendmsg () and recvmsg () system calls). The protocol

is responsible for disposal of the data mbuf chains on output operations. A non-

zero return value gives a UNIX error number that should be passed to higher

level software. The following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socket () system call) the

protocol module is called with this request. It is the responsibility of the

protocol module to allocate any resources necessary. The “attach” request

will always precede any of the other requests, and should not occur more

than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is

deleted. The protocol module may deallocate any resources assigned to the

socket.

PRU_BIND
When a socket is initially created it has no address bound to it. This request

indicates that an address should be bound to an existing socket. The proto-

col module must verify that the requested address is valid and available for

use.

PRU_LISTEN
The “listen” request indicates the user wishes to listen for incoming connec-

tion requests on the associated socket. The protocol module should perform

any state changes needed to carry out this request (if possible). A “listen”

request always precedes a request to accept a connection.

PRU_CONNECT
The “connect” request indicates the user wants to a establish an association.

The addr parameter supplied describes the peer to be connected to. The
effect of a connect request may vary depending on the protocol. Virtual cir-

cuit protocols, such as TCP [Postel81b], use this request to initiate establish-

ment of a TCP connection. Datagram protocols, such as UDP [Postel80],

simply record the peer’s address in a private data structure and use it to tag

all outgoing packets. There are no restrictions on how many times a connect

request may be used after an attach. If a protocol supports the notion of

multi-casting, it is possible to use multiple connects to establish a multi-cast

group. Alternatively, an association may be broken by a

PRU_D isCONNECT request, and a new association created with a subse-

quent connect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more
connections, this request is made to indicate the user has accepted the first

connection on the queue of pending connections. The protocol module
should fill in the supplied address buffer with the address of the connected

party.

PRU_D ISCONNECT
Eliminate an association created with a PRU_CONNECT request.

microsystems
Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 333

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the

addr parameter indicates the direction of the shutdown, as encoded in the

soshutdownO system call). The protocol may, at its discretion, deallo-

cate any data structures related to the shutdown and/or notify a connected

peer of the shutdown.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table

includes the PR_WANTRCVD flag. When a user removes data from the

receive queue this request will be sent to the protocol module. It may be

used to trigger acknowledgements, refresh windowing information, initiate

data transfer, etc.

PRU_SEND
Each user request to send data is translated into one or more PRU_SEND
requests (a protocol may indicate that a single user send request must be

translated into a single PRU_SEND request by specifying the PR_AT0MIC
flag in its protocol description). The data to be sent is presented to the proto-

col as a list of mbufs, and an address is, optionally, supplied in the addr

parameter. The protocol is responsible for preserving the data in the

socket’s send queue if it is not able to send it immediately, or if it may need

it at some later time (e.g. for retransmission).

PRU_ABORT
This request indicates an abnormal teimination of service. The protocol

should delete any existing association(s).

PRU_CONTROL
The “control” request is generated when a user performs a UNIX ioct 1 (

)

system call on a socket (and the ioctl is not intercepted by the socket rou-

tines). It allows protocol-specific operations to be provided outside the

scope of the common socket interface. The addr parameter contains a

pointer to a static kernel data area where relevant information may be

obtained or returned. The m parameter contains the actual ioctl (

)

request code (note the non-standard calling convention). The rights parame-

ter contains a pointer to an ifnet structure if the ioctl () operation per-

tains to a particular network interface.

PRU_SENSE
The “sense” request is generated when the user makes an f stat () system

call on a socket; it requests status of the associated socket. This currently

returns a standard stat () structure. It typically contains only the optimal

transfer size for the connection (based on buffer size, windowing informa-

tion and maximum packet size). The m parameter contains a pointer to a

static kernel data area where the status buffer should be placed.

PRU_RCVOOB
Any “out-of-band” data presently available is to be returned. An mbuf is

passed to the protocol module, and the protocol should either place data in

the mbuf or attach new mbufs to the one supplied if there is insufficient

space in the single mbuf. An error may be returned if out-of-band data is not

microsystems
Revision A, of 27 March 1990

334 Transport-Level Programming

(yet) available or has already been consumed. The addr parameter contains

any options such as MSG_PEEK to examine data without consuming it.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to it.

The address (with protocol specific format) is returned in the addr parame-

ter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The

socket must be in a SS_lSCONNECTED state for this request to be made to

the protocol. The address format (protocol specific) is returned in the addr

parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a

connection between the two without binding any addresses, if possible. This

call is used in implementing the socketpair (2) system call.

The following requests are used internally by the protocol modules and are never

generated by the socket routines. In certain instances, they are handed to the

pr_usrreq routine solely for convenience in tracing a protocol’s operation

(e.g. PRU_SLOWTIMO).

PRU_FASTTIMO
A “fast timeout” has occurred. This request is made when a timeout occurs

in the protocol’s pr_fastimo routine. The addr parameter indicates

which timer expired.

PRU_SLOWTIMO
A “slow timeout” has occurred. This request is made when a timeout occurs

in the protocol’s pr_slowtimo () routine. The addr parameter indicates

which timer expired.

PRU_PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It

requests reception of data destined for the protocol and not the user. No pro-

tocols currently use this facility.

PRU_PROTOSEND
This request allows a protocol to send data destined for another protocol

module, not a user. The details of how data is marked “addressed to proto-

col” instead of “addressed to user” are left to the protocol modules. No pro-

tocols currently use this facility.

12.4. Protocol to Protocol

Interface

The interface between protocol modules is through the pr_usrreq(),
pr_input(). pr_output(), pr_ctlinput(). and pr_ctloutput () rou-

tines. The calling conventions for all but the pr_usrreq () routine are

expected to be specific to the protocol modules and are not guaranteed to be con-

sistent across protocol families. We will examine the conventions used for some

fsun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 335

of the Internet protocols in this section as an example.

pr_output () The Internet protocol UDP uses the convention,

/ \

error = udp_output (inp, m)

;

int error;
struct inpcb *inp;

struct mbuf *m;

\ V

where the inp, “mtemet protocol control Mock”, passed between modules con-

veys per connection state information, and the mbuf chain contains the data to be

sent. UDP performs consistency checks, appends its header, calculates a check-

sum, etc. before passing the packet on. UDP is based on the Internet Protocol, IP

[Postel81a], as its transport. UDP passes a packet to the IP module for output as

follows:

/ A

error = ip_output (m, opt. ro, flags)

;

int error;
struct mbuf *m, *opt;
struct route *ro; int flags;

v

pr_input ()

The call to IP’s output routine is more complicated than that for UDP, as befits

the additional work the IP module must do. The m parameter is the data to be

sent, and the opt parameter is an optional list of IP options which should be

placed in the IP packet header. The ro parameter is used in making routing deci-

sions (and passing them back to the caller for use in subsequent calls). The final

parameter, flags, contains flags indicating whether the user is allowed to

transmit a broadcast packet and if routing is to be performed. The broadcast flag

may be inconsequential if the underlying hardware does not support the notion of

broadcasting.

All output routines return 0 on success and a UNIX error number if a failure

occurred that could be detected immediately (no buffer space available, no route

to destination, etc.).

Both UDP and TCP use the following calling convention,

r

(void) (*protosw[] ,pr_input) (m, ifp)

;

struct mbuf *m;

struct ifnet *ifp;

Each mbuf list passed is a single packet to be processed by the protocol module.

The interface from which the packet was received is passed as the second param-

eter.

The IP input routine is a software interrupt level routine, and so is not called with

any parameters. It instead communicates with network interfaces through a

queue, ipintrq, which is identical in structure to the queues used by the net-

work interfaces for storing packets awaiting transmission. The software interrupt

microsystems
Revision A, of 27 March 1990

336 Transport-Level Programming

is enabled by the network interfaces when they place input data on the input

queue.

pr_ctlinput () This routine is used to convey “control” information to a protocol module (i.e.

information that might be passed to the user, but is not data).

The common calling convention for this routine is,

/

(void) (*protosw [] ,pr_ctlinput) (req, addr);
int req;

struct sockaddr *addr;

V ,

The req parameter is one of the following,

#define PRC__IFDOWN 0 / * interface transition * /

define PRC ROUTEDEAD 1 / * select new route ifpossible * /

define PRC QUENCH 4 / * some said to slow down * /

define PRC__MSGSI ZE 5 / * message sizeforced drop * /

define PRC__HOSTDEAD 6 / * normallyfrom IMP * /

define PRC HOSTUNREACH 7 / * ditto * /

define PRC UNREACH NET 8 / * no route to network * /

define PRC UNREACH HOST 9 / * no route to host * /

define PRC__UNREACH_PROTOCOL 10 / * dst says bad protocol * /

define PRC UNREACH PORT 11 / * bad port # * /

define PRC UNREACH NEEDFRAG 12 / * IP DF caused drop * /

define PRC UNREACH SRCFAIL 13 / * source routefailed * /

define PRC REDIRECT NET 14 / * net routing redirect * /

define PRC REDIRECT HOST 15 / * host routing redirect * /

define PRC__REDIRECT_TOSNET 16 / * redirectfor type & net * /

define PRC REDIRECT TOSHOST 17 / * redirectfor tos & host * /

define PRC TIMXCEED INTRANS 18 / * packet expired in transit * /

define PRC__TIMXCEED_REASS 19 / * lifetime expired on reass q
* /

#define
v

PRC__PARAMPROB 20 / * header incorrect * /

while the addr parameter is the address to which the condition applies. Many of

the requests have obviously been derived from ICMP (the Internet Control Mes-

sage Protocol [Postel81c]), and from error messages defined in the 1822

host/IMP convention [BBN78]. Mapping tables exist to convert control requests

to UNIX error codes that are delivered to a user.

pr_ctloutput () This is the routine that implements per-socket options at the protocol level for

getsockopt() and setsockopt(). The calling convention is,

r \

error = (*protosw [] .pr_ctloutput) (op, so, level, optname,mp)

;

int op;

struct socket *so;

int level, optname;
struct mbuf **mp;

V /

where op is one of PRCO_SETOPT or PRCO_GETOPT, so is the socket whence

#sunV microsystemsmicrosystems
Revision A, of 27 March 1990

Chapter 12— Socket-B ased IPC Implementation Notes 337

12.5. Protocol/Network-

Interface Interface

Packet Transmission

Packet Reception

the call originated, and level and optname are the protocol level and option

name supplied by the user. The results of a PRCO_GETOPT call are returned in

an mbuf whose address is placed in mp before return. On a PRCO_SETOPT call,

mp contains the address of an mbuf containing the option data; the mbuf should

be freed before return.

The lowest layer in the set of protocols that comprise a protocol family must

interface itself to one or more network interfaces in order to transmit and receive

packets. It is assumed that any routing decisions have been made before handing

a packet to a network interface; in fact this is absolutely necessary in order to

locate any interface at all (unless, of course, one uses a single “hardwired” inter-

face). There are two cases with which to be concerned, transmission of a packet

and receipt of a packet; each will be considered separately.

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it

transmits a fully formatted packet with the following call,

c
N

error = (*ifp->if_output) (ifp, m, dst)

int error;
struct ifnet *ifp;
struct mbuf *m;

struct sockaddr *dst;

J

The output routine for the network interface transmits the packet m to the dst

address, or returns an error indication (a UNIX error number). In reality

transmission may not be immediate or successful; normally the output routine

simply queues the packet on its send queue and primes an interrupt driven rou-

tine to actually transmit the packet. For unreliable media, such as the Ethernet,

“successful” transmission simply means that the packet has been placed on the

cable without a collision. On the other hand, an 1822 interface guarantees proper

delivery or an error indication for each message transmitted. The model

employed in the networking system attaches no promises of delivery to the pack-

ets handed to a network interface, and thus corresponds more closely to the Eth-

ernet. Errors returned by the output routine are only those that can be detected

immediately, and are normally trivial in nature (no buffer space, address format

not handled, etc.). No indication is received if errors are detected after the call

has returned.

Each protocol family must have one or more “lowest level” protocols. These

protocols deal with internetwork addressing and are responsible for the delivery

of incoming packets to the proper protocol processing modules. In the PUP
model [Boggs78] these protocols are termed Level 1 protocols, in the ISO model,

network layer protocols. In this system each such protocol module has an input

packet queue assigned to it. Incoming packets received by a network interface

are queued for the protocol module, and a software interrupt is posted to initiate

processing.

Three macros are available for queuing and dequeuing packets:

#sun
microsystems

Revision A, of 27 March 1990

338 Transport-Level Programming

12.6. Gateways and
Routing Issues

Routing Tables

IF_ENQUEUE (ifq, m)

This places the packet m at the tail of the queue ifq.

IF_DEQUEUE (ifq, m)

This places a pointer to the packet at the head of queue ifq in m and removes

the packet from the queue. A zero value will be returned in m if the queue is

empty.

IF_DEQUEUEIF (ifq, m, ifp)

Like IF_DEQUEUE, this removes the next packet from the head of a queue

and returns it in m. A pointer to the interface on which the packet was

received is placed in ifp, a (struct ifnet *).

IF_PREPEND (ifq, m)

This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple form of conges-

tion control. The macro IF_QFULL {ifq) returns 1 if the queue is filled, in

which case the macro IF_DR0P (ifq) should be used to increment the count of

the number of packets dropped, and the offending packet is dropped. For exam-

ple, the following code fragment is commonly found in a network interface’s

input routine,

f \

if (IF_QFULL (inq)) {

IF_DROP (inq) ;

m freem(m) ;

} else
1F_ENQUEUE (inq, m)

;

V

The system has been designed with the expectation that it will be used in an

internetwork environment. The “canonical” environment was envisioned to be a

collection of local area networks connected at one or more points through hosts

with multiple network interfaces (one on each local area network), and possibly a

connection to a long haul network (for example, the ARPANET). In such an

environment, issues of gatewaying and packet routing become very important.

Certain of these issues, such as congestion control, have been handled in a

simplistic manner or specifically not addressed. Instead, where possible, the net-

work system attempts to provide simple mechanisms upon which more involved

policies may be implemented. As some of these problems become better under-

stood, the solutions developed will be incorporated into the system.

This section will describe the facilities provided for packet routing. The simplis-

tic mechanisms provided for congestion control are described in the Buffering,

Congestion Control section below.

The network system maintains a set of routing tables for selecting a network

interface to use in delivering a packet to its destination. These tables are of the

form:

microsystems
Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 339

struct rtentry {

A

u_long rt_hash; / * hash keyfor lookups * /

struct sockaddr rt dst; / * destination net or host * /

struct sockaddr rt_gateway; / * forwarding agent * /

short rt flags; / * see below * /

short rt_refcnt; /*# ofreferences to structure * /

u_long rt_use; / * packets sent using route * /

struct

}

;

V

ifnet *rt ifp; / * interface to give packet to * /

J

The routing information is organized in two separate tables, one for routes to a

host and one for routes to a network. The distinction between hosts and networks

is necessary so that a single mechanism may be used for both broadcast and

multi-drop type networks, and also for networks built from point-to-point links.

Each table is organized as a hashed set of linked lists. Two 32-bit hash values

are calculated by routines defined for each address family; one based on the des-

tination being a host, and one assuming the target is the network portion of the

address. Each hash value is used to locate a hash chain to search (by taking the

value modulo the hash table size) and the entire 32-bit value is then used as a key

in scanning the list of routes. Lookups are applied first to the routing table for

hosts, then to the routing table for networks. If both lookups fail, a final lookup

is made for a “wildcard” route (by convention, network 0). The first appropriate

route discovered is used. By doing this, routes to a specific host on a network

may be present as well as routes to the network. This also allows a “fall back”

network route to be defined to a “smart” gateway which may then perform more

intelligent routing.

Each routing table entry contains a destination (the desired final destination), a

gateway to which to send the packet, and various flags which indicate the route’s

status and type (host or network). A count of the number of packets sent using

the route is kept, along with a count of “held references” to the dynamically allo-

cated structure to insure that memory reclamation occurs only when the route is

not in use. Finally, a pointer to the a network interface is kept; packets sent using

the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as “direct” or

“indirect”. The host/network distinction determines how to compare the

rt_dst field during lookup. If the route is to a network, only a packet’s desti-

nation network is compared to the rt_dst entry stored in the table. If the route

is to a host, the addresses must match bit for bit.

The distinction between “direct” and “indirect” routes indicates whether the des-

tination is directly connected to the source. This is needed when performing

local network encapsulation. If a packet is destined for a peer at a host or net-

work which is not directly connected to the source, the internetwork packet

header will contain the address of the eventual destination, while the local net-

work header will address the intervening gateway. Should the destination be

directly connected, these addresses are likely to be identical, or a mapping
between the two exists. The RTF_GATEWAY flag indicates that the route is to an

microsystems
Revision A, of 27 March 1990

340 Transport-Level Programming

Routing Table Interface

“indirect” gateway agent, and that the local network header should be filled in

from the rt_gateway field instead of from the final internetwork destination

address.

It is assumed that multiple routes to the same destination will not be present;

only one of multiple routes, that most recently installed, will be used.

Routing redirect control messages are used to dynamically modify existing rout-

ing table entries as well as dynamically create new routing table entries. On
hosts where exhaustive routing information is too expensive to maintain (e.g.

work stations), the combination of wildcard routing entries and routing redirect

messages can be used to provide a simple routing management scheme without

the use of a higher level policy process. Current connections may be rerouted

after notification of the protocols by means of their pr_ct linput () entries.

Statistics are kept by the routing table routines on the use of routing redirect mes-

sages and their affect on the routing tables. These statistics may be viewed using

.netstat (1)

Status information other than routing redirect control messages may be used in

the future, but at present they are ignored. Likewise, more intelligent “metrics”

may be used to describe routes in the future, possibly based on bandwidth and

monetary costs.

A protocol accesses the routing tables through three routines, one to allocate a

route, one to free a route, and one to process a routing redirect control message.

The routine rtalloc ()
performs route allocation; it is called with a pointer to

the following structure containing the desired destination:

f
struct route {

struct rtentry *ro_rt;

struct

}

;

v

sockaddr ro_dst;

The route returned is assumed “held” by the caller until released with an

rtfreeO call. Protocols which implement virtual circuits, such as TCP, hold

onto routes for the duration of the circuit’s lifetime, while connection-less proto-

cols, such as UDP, allocate and free routes whenever their destination address

changes.

The routine rtredirect () is called to process a routing redirect control mes-

sage. It is called with a destination address, the new gateway to that destination,

and the source of the redirect. Redirects are accepted only from the current

router for the destination. If a non-wildcard route exists to the destination, the

gateway entry in the route is modified to point at the new gateway supplied. Oth-

erwise, a new routing table entry is inserted reflecting the information supplied.

Routes to interfaces and routes to gateways which are not directly accessible

from the host are ignored.

Asun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 34

1

User Level Routing Policies

12.7. Raw Sockets

Control Blocks

Routing policies implemented in user processes manipulate the kernel routing

tables through two ioctl () calls. The commands SIOCADDRT and SIOC-
delrt add and delete routing entries, respectively; the tables are read through

the /dev/kmem device. The decision to place policy decisions in a user process

implies that routing table updates may lag a bit behind the identification of new
routes, or the failure of existing routes, but this period of instability is normally

very small with proper implementation of the routing process. Advisory infor-

mation, such as ICMP error messages and IMP diagnostic messages, may be read

from raw sockets (described in the next section).

Several routing policy processes have already been implemented. The system

standard “routing daemon” uses a variant of the Xerox NS Routing Information

Protocol [Xerox82] to maintain up-to-date routing tables in our local environ-

ment. Interaction with other existing routing protocols, such as the Internet EGP
(Exterior Gateway Protocol), has been accomplished using a similar process.

A raw socket is an object that allows users direct access to a lower-level protocol.

Raw sockets are intended for knowledgeable processes that wish to take advan-

tage of some protocol feature not directly accessible through the normal inter-

face, or for the development of new protocols built atop existing lower level pro-

tocols. For example, a new version ofTCP might be developed at the user level

by utilizing a raw IP socket for delivery of packets. The raw IP socket interface

attempts to provide an identical interface to the one a protocol would have if it

were resident in the kernel.

The raw socket support is built around a generic raw socket interface, (possibly)

augmented by protocol-specific processing routines. This section will describe

the core of the raw socket interface.

Every raw socket has a protocol control block of the following form:

[struct rawcb {

struct rawcb *rcb next; / * doubly linked list * /

struct rawcb *rcb prev;
struct socket *rcb socket; / * back pointer to socket * /

struct sockaddr rcb_faddr; / * destination address * /

struct sockaddr rcb_laddr; /* socket' s address * /

struct sockproto rcb_j?roto; / * protocolfamily, protocol * /

caddr_t rcb.pcb; / * protocol specific stuff * /

struct mbuf *rcb_options; / * protocol specific options * /

struct route rcb_route; / * routing information * /

int rcb_cc

;

/ *bytes ofrawintr queued data* /

int rcb_mbcnt

;

/ *bytes ofrawintr queued mbufs* /

short
}

;

v

rcb_flags;

/

All the control blocks are kept on a doubly linked list for performing lookups

during packet dispatch. Associations may be recorded in the control block and
used by the output routine in preparing packets for transmission. The
rcb_proto structure contains the protocol family and protocol number with

#sun
Nr microsystems

Revision A, of 27 March 1990

342 Transport-Level Programming

Input Processing

which the raw socket is associated. The protocol, family, and addresses are used

to filter packets on input; this will be described in more detail shortly. If any

protocol-specific information is required, it may be attached to the control block

using the rcb_pcb field. Protocol-specific options for transmission in outgoing

packets may be stored in rcb_options. rcb_cc and rcb_mbcnt are used

to keep track of the resources consumed by the raw socket.

A raw socket interface is datagram oriented. That is, each send or receive on the

socket requires a destination address. This address may be supplied by the user

or stored in the control block and automatically installed in the outgoing packet

by the output routine. Since it is not possible to determine whether an address is

present or not in the control block, two flags, RAW_LADDR and RAW_FADDR,

indicate if a local and foreign address are present. Routing is expected to be per-

formed by the underlying protocol if necessary.

Input packets are “assigned” to raw sockets based on a simple pattern matching

scheme. Each network interface or protocol gives unassigned packets to the raw

input routine with the call:

\

raw_input (m, proto, src, dst)

struct mbuf *m;

struct sockproto *proto;

struct sockaddr *src, *dst;— J

The data packet then has a generic header prepended to it of the form
— >

struct raw_header {

struct sockproto rawjjroto;
struct sockaddr raw_dst;
struct sockaddr raw_src;

}

;

^

and it is placed in a packet queue for the “raw input protocol” module. Packets

taken from this queue are copied into any raw sockets that match the header

according to the following rules,

1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that

found in the packet header.

3) If a local address is defined for the socket, the address format of the local

address is the same as the destination address’s and the two addresses agree

bit for bit.

4) The rules of 3) are applied to the socket’s foreign address and the packet’s

source address.

A basic assumption is that addresses present in the control block and packet

header (as constructed by the network interface and any raw input protocol

module) are in a canonical form that may be “block compared”.

#sun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 343

Output Processing On output the raw pr_usrreq () routine passes the packet and a pointer to the

raw control block to the raw protocol output routine for any processing required

before it is delivered to the appropriate network interface. The output routine is

normally the only code required to implement a raw socket interface.

12.8. Buffering, Congestion One of the major factors in the performance of a protocol is the buffering policy

Control used. Lack of a proper buffering policy can force packets to be dropped, cause

falsified windowing information to be emitted by protocols, fragment host

memory, degrade the overall host performance, etc. Due to problems such as

these, most systems allocate a fixed pool of memory to the networking system

and impose a policy optimized for “normal” network operation.

The networking system developed for UNIX is little different in this respect. At
boot time a fixed amount of memory is allocated by the networking system. At
later times more system memory may be requested as the need arises, but at no
time is memory ever returned to the system. It is possible to garbage collect

memory from the network, but difficult. In order to perform this garbage collec-

tion properly, some portion of the network will have to be “turned off’ as data

structures are updated. The interval over which this occurs must kept small com-
pared to the average inter-packet arrival time, or too much traffic may be lost,

impacting other hosts on the network, as well as increasing load on the intercon-

necting mediums. In our environment we have not experienced a need for such

compaction, and thus have left the problem unresolved.

The mbuf structure was introduced in the Memory, Addressing section, above. In

this section a brief description will be given of the allocation mechanisms, and
policies used by the protocols in performing connection level buffering.

Memory Management The basic memory allocation routines manage a private page map, the size of

which determines the maximum amount of memory that may be allocated by the

network. A small amount of memory is allocated at boot time to initialize the

mbuf and mbuf cluster free lists. When the free lists are exhausted, more
memory is requested from the system memory allocator if space remains in the

map. If memory cannot be allocated, callers may block awaiting free memory, or

the failure may be reflected to the caller immediately. The allocator will not

block awaiting free map entries, however, as exhaustion of the resource map usu-

ally indicates that buffers have been lost due to a “leak.” An array of reference

counts parallels the cluster pool and is used when multiple references to a cluster

are present.

64 mbufs fit into a 8Kbyte page of memory. Data can be placed into a mbuf by
copying, or, better, the memory that contains that data can be treated as a tem-
porary (“loaned”) mbuf. This second alternative is far more efficient than an
actual copy.

Protocol Buffering Policies Protocols reserve fixed amounts of buffering for send and receive queues at

socket creation time. These amounts define the high and low water marks used
by the socket routines in deciding when to block and unblock a process. The
reservation of space does not currently result in any action by the memory
management routines.

&sun
microsystems

Revision A, of 27 March 1990

344 Transport-Level Programming

Queue Limiting

Packet Forwarding

12.9. Out of Band Data

Protocols that provide connection level flow control do this based on the amount

of space in the associated socket queues. That is, send windows are calculated

based on the amount of free space in the socket’s receive queue, while receive

windows are adjusted based on the amount of data awaiting transmission in the

send queue. Care has been taken to avoid the “silly window syndrome”

described in [Clark82] at both the sending and receiving ends.

Incoming packets from the network are always received unless memory alloca-

tion fails. However, each Level 1 protocol input queue has an upper bound on

the queue’s length, and any packets exceeding that bound are discarded. It is

possible for a host to be overwhelmed by excessive network traffic (for instance a

host acting as a gateway from a high bandwidth network to a low bandwidth net-

work). As a “defensive” mechanism the queue limits may be adjusted to throttle

network traffic load on a host. Consider a host willing to devote some percentage

of its machine to handling network traffic. If the cost of handling an incoming

packet can be calculated so that an acceptable “packet handling rate” can be

determined, then input queue lengths may be dynamically adjusted based on a

host’s network load and the number of packets awaiting processing. Obviously,

discarding packets is not a satisfactory solution to a problem such as this (simply

dropping packets is likely to increase the load on a network); the queue lengths

were incorporated mainly as a safeguard mechanism.

When packets can not be forwarded because of memory limitations, the system

attempts to generate a “source quench” message. In addition, any other problems

encountered during packet forwarding are also reflected back to the sender in the

form of ICMP packets. This helps hosts avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an

early stage of network development, broadcast packets were forwarded and a

“routing loop” resulted in network saturation and every host on the network

crashing.

Out of band data is a facility peculiar to the stream socket abstraction defined.

Little agreement appears to exist as to what its semantics should be. TCP defines

the notion of “urgent data” as in-line, while the NBS protocols [Burruss81] and

numerous others provide a fully independent logical transmission channel along

which out of band data is to be sent. In addition, the amount of the data which

may be sent as an out of band message varies from protocol to protocol; every-

thing from 1 bit to 16 bytes or more.

A stream socket’s notion of out of band data has been defined as the lowest rea-

sonable common denominator (at least reasonable in our minds); clearly this is

subject to debate. Out of band data is expected to be transmitted out of the nor-

mal sequencing and flow control constraints of the data stream. A minimum of 1

byte of out of band data and one outstanding out of band message are expected to

be supported by the protocol supporting a stream socket. It is a protocol’s prero-

gative to support larger-sized messages, or more than one outstanding out of

band message at a time.

§sun
microsystems

Revision A, of 27 March 1990

Chapter 12— Socket-Based IPC Implementation Notes 345

Out of band data is maintained by the protocol and is usually not stored in the

socket’s receive queue. A socket-level option, S0_00BINLINE, is provided to

force out-of-band data to be placed in the normal receive queue when urgent data

is received; this sometimes amelioriates problems due to loss of data when multi-

ple out-of-band segments are received before the first has been passed to the user.

The PRU_SENDOOB and PRU_RCVOOB requests to the pr_usrreq () routine

are used in sending and receiving data.

12.10. Acknowledgements The internal structure of the system is patterned after the Xerox PUP architecture

[Boggs79], while in certain places the Internet protocol family has had a great

deal of influence in the design. The use of software interrupts for process invoca-

tion is based on similar facilities found in the VMS operating system. Many of

the ideas related to protocol modularity, memory management, and network

interfaces are based on Rob Gurwitz’s TCP/IP implementation for the 4.1BSD
version of the UNIX system [Gurwitz81].

12.11. References [Boggs79] Boggs, D. R„ J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP:
An Internetwork Architecture. Report CSL-79-10. XEROX Palo

Alto Research Center, July 1979.

[BBN78] Bolt Beranek and Newman; Specification for the Interconnection

of Host and IMP. BBN Technical Report 1822. May 1978.

[Cerf78] Cerf, V. G.; The Catenet Model for Internetworking. Internet

Working Group, IEN 48. July 1978.

[Clark82] Clark, D. D.; Window and Acknowledgement Strategy in TCP,
RFC-813. Network Information Center, SRI International. July

1982.

[Gurwitz81] Gurwitz, R. F.; VAX-UNIX Networking Support Project -

Implementation Description. Internetwork Working Group, IEN
168. January 1981.

[IS081] International Organization for Standardization. ISO Open Systems

Interconnection- Basic Reference Model. ISO/TC 97/SC 16 N
719. August 1981.

[Joy86] Joy, W.; Fabry, R.; Leffler, S.; McKusick, M.; and Karels, M.;

Berkeley Software Architecture Manual, 4.3BSD Edition. UNIX
Programmer’s Supplementary Documents, Nol. 1 (PS 1:6). Com-
puter Systems Research Group, University of California, Berke-

ley. May, 1986.

[Leffler84] Leffler, S.J. and Karels, M.J.; Trailer Encapsulations, RFC-893.
Network Information Center, SRI International. April 1984.

[Postel80] Postel, J. User Datagram Protocol, RFC-768. Network Informa-

tion Center, SRI International. May 1980.

[Postel81a] Postel, J., ed. Internet Protocol, RFC-791. Network Information

Center, SRI International. September 1981.

Asun
microsystems

Revision A, of 27 March 1990

346 Transport-Level Programming

[Postel81b] Postel, J., ed. Transmission Control Protocol, RFC-793. Network

Information Center, SRI International. September 1981.

[Postel81c] Postel, J. Internet Control Message Protocol, RFC-792. Network

Information Center, SRI International. September 1981.

[Xerox81] Xerox Corporation. Internet Transport Protocols. Xerox System

Integration Standard 028112. December 1981.

[Zimmermann80]

Zimmermann, H. OSI Reference Model - The ISO Model of

Architecture for Open Systems Interconnection. IEEE Transac-

tions on Communications. Com-28(4); 425-432. April 1980.

fsun
Xr microsystems

Revision A, of 27 March 1990

Index

4
4.2BSD networking, 251

4.3BSD networking, 252

A
accept () , 297

address

binding, 309

families, 318

variable length, 318

wildcard, 309

administering

networks, 9

servers, 8

administering a server, 8

administration

of RPC, 38

advisory locks, 29

AF - address format, 281

ALRM, 99

application, 1

arbitrary data types, 69

Arpanet, 338

assigning program numbers, 37

authentication, 16, 86, 310

authunix_create_default () ,
87

authunix_parms, 88

B
batching, 82

bind (),311

binding local names, 282

bool_t, 109

broadcast RPC, 56, 81

synopsis, 82

broadcasting, 311

buffering, 343

byte swapping, 293

c
caller process, 2, 33

callrpc () , 65, 67, 68, 75, 76, 78

changing passwords, 26

CLIENT, 76

client handle, used by rpcgen, 46

client machines, 1

client/server model, 294

clients and servers, 21

clnt_broadcast () , 82

clnt_call () , 76

clnt_control () ,
56

clnt_create () , 55

clnt_destroy (), 76

clnttcp_create () , 76

clntudp_create () , 74

communications domains, 278

computing environments, 5

congestion control, 343

connect () , 275

connection

errors, 284
establishment, 283

connectionless

servers, 299
sockets, 286

control blocks, 341

D
data transfer, 285

datagram

Internet domain, 263, 264

socket, 281

UNIX domain, 260

vs streams, 278

dbm () , 23, 25

debugging with rpcgen, 51

define statements, 53

direction of XDR operations, 120

doma inname command, 23, 24

domains and protocols, 258

E
eachresult () , 82

enum clnt_stat (in RPC programming), 68

/etc/ethers, 25

/etc/exports, 8

/etc/group, 25

/etc/hosts, 25, 26

/etc/mount, 6

/etc/netgroup, 25

- 347 -

Index— Continued

/etc/networks, 25

/etc/passwd, 25, 26

/etc/protocols, 25

/etc/ services, 25

ether, 67

EXAMPLEPROG, 99

export a filesystem, 7

exports, 8

extensible design, 8

External Data Representation, 129, 168

F
fcntl () , 27

FD_CLR () , 288

FD_SET () , 288

FILE, 120

filehandle, 12

filesystem

data, 1

exportation, 7

model, 169

operations, 1

flock () , 26

f scanf () , 86

ftp, 17

futures, RPC, 101

G
gateways issues, 338

getdomainname () ,
24

getgrent () , 25

gethostbyaddr (), 26, 291

gethostbyname (), 26, 291

gethostent () , 25

gethostname () , 24

getpeername () , 315

getprotobyname, 292

getprotobynumber, 292

getprotoent, 292

getpwent (), 25

getsockopt () , 3 14

gettransient () , 98, 99

H
heterogeneity of machines, 8

high-water mark, 325

host names, 291

hostname, 24

htonl () , 124

I

I/O multiplexing, 288

I/O requests, asynchronous notification, 305

inet_ntoa () , 291

using inetd, 92, 295, 315

inode, 10

input processing, 342

Inter-Process Communication, 187

interface flags, 312

Internet, 278

Domain Stream Connection, 266

interrupt-driven socket I/O, 304

ip_output () , 335

IPC
access rights, 277

address representation, 318

basics, 280

C run-time routines, 293

connection, 266
gather, 277

implementation notes, 317

internal layering, 322

Internet domain datagrams, 263

Internet Domain Stream Connection, 269

library routines, 290
memory addressing, 318

memory management, 319

multiplexing, 288

pipe, 253

pipes, 253

processes, 252

read () , 275

receive queues, 324

recv () , 275

scatter, 277

select () , 270

send queues, 324

socket layer, 323

socket naming, 280

socketpair, 256

socketpairs, 256

sockets, 256

UNIX domain, 280

UNIX domain datagrams, 260

UNIX domain stream connection, 272, 273

write () , 275

IPPROTO_UDP, 74

L
layers of RPC, 65

libc.a, 103

library primitives for XDR, 109

library routines, 290

librpcsvc . a, 66

listen () , 284

local names, 282

Lock Manager, 26

crashing, 27

protocol, 29

state, 27

lockf (),27

locking, 2

locks, advisory, 29

long, 92

low-water mark, 325

lower layers of RPC, 72

- 348 -

Index— Continued.

M
m_ad j () , 322

m_cat () , 322

m_copy () , 322

m_cpytoc () , 322

m_free () , 321

m_get () , 321

m_pullup () , 322

makedbm, 25

malloc () , 33, 65

master and slave, 24

mbuf , 320

mcldup () , 321

MCLGET (),321

mclgetx () , 321

memory allocation with XDR, 77

memory management, 343

MFREE (),321

MGET (),321

miscellaneous RPC features, 80

mount, 6, 67

NFS, 12

NFS servers, 13

mount data types, 184

dirpath, 184

fhandle, 184

fhstatus, 184

name, 185

mount protocol, 183, 14

basic data types, 184

introduction, 183

RPC information, 184

XDR structure sizes, 184

mount server procedures, 185

MNTPROC_DUMP (), 185

MNTPR0C_EXP0RT () ,
186

MNTPROC_MNT (), 185

MNTPROC_NULL () , 185

MNTPROC_UMNT () , 186

MNTPROC_UMNTALL () , 186

mounting a remote filesystem, 6

MSG_OOB, 302

MSG_PEEK, 302

msghdr, 277

mtom () , 321

multiplexing, 288

N
name binding, 282

names

host, 291

network, 291

protocol, 292

netstat () , 321

network

administration, 9

computing environments, 5

configuration, 311

major services, 2

names, 291

network, continued

services, 1

Network File System, 168, 1, 4

version-2 protocol specification, 168

Network Information Service, 22, 2

clients, 25

data storage, 25

default files, 25

domain, 23

explained, 23

hosts database, 26

maps, 23

naming, 24

password database, 26

servers, 25

Network Lock Manager, 26, 2

Network Status Monitor, 30, 3, 27

network-interface layer, 328

NFS, 168, 1,2,4

administration, 9

architecture, 8

basic data types, 170

different machines, 8

different operating systems, 8

example usage, 6

extensibility, 8

filesystem example, 7

implementation, 181

Interface, 12

introduction, 168

mount servers, 13

pathname interpretation, 182

pathnames, 12

performance, 9

permission issues, 182

protocol, 9, 169

protocol definition, 1 69

reliability, 9

RPC information, 170

server/client relationship, 182

setting RPC parameters, 183

special files, 16

stateful devices, 16

stateless protocol, 9, 15

Sun implementation, 10

the mount protocol, 12

transparencies, 11

transparent access, 8

version-2 protocol specification, 168

NFS data types, 170

attrstat, 175

diropargs, 175

diropres, 175

fattr, 173

fhandle, 172

filename, 174

ftype, 172

path, 174

sattr, 174

stat, 171

timeval, 173

NFS server procedures, 175

NFSPROC_CREATE () , 178

- 349 -

Index— Continued

NFS server procedures, continued

NFSPROC_GETATTR () , 176

NFSPROC_LINK () , 179

NFSPROC_LOOKUP () , 177

NFSPROC_MKDIR () ,
180

NFSPROC_NULL () ,
176

NFSPROC_READ, 177

NFSPROC_READDIR () , 180

NFSPROC_READLINK () , 177

NFSPROC_REMOVE () , 178

NFSPROC_RENAME () , 179

NFSPROC_RMDIR () , 180

NFSPROC_ROOT, 177

NFSPROC_SETATTR () , 176

NFSPROC_STATFS (), 181

NFSPROC_SYMLINK () , 179

NFSPROC_WRITE () , 178

NFSPR0C_WRITECACHE () , 178

NIS, 3

non-blocking sockets, 304

ntohl (), 124

NULLPROC, 74, 89

o
OSI model, 317

out of band data, 302, 344

output processing, 343

P
packet

forwarding, 344

reception, 337

transmission, 337

passwd, 26

passwords, changing, 26

performance, 10

pipe semantics, 280

pmap_set () , 98

pmap_unset () , 74

pointer semantics and XDR, 119

port allocation, 310

portability, 301

porting

SPARC, 293

Sun-4, 293

portmapper, 21, 2

page registration, 21

typical mapping sequence, 22

pr_ctlinput () , 336

pr_ct loutput (), 336

pr_input () , 335

process groups, 305

PROG, 92

program number assignment, 37

PROGVERS, 92

PROGVERS_ORIG, 92

protocol

buffering policies, 343

families, 258

layers, 326

names, 292

protocol, continued

to network interface, 337
to protocol interface, 334

protocols, selecting specific, 308

pseudo terminals, 306

Q
queue limiting, 344

R
raw sockets, 281, 341

rep, 17, 95

rev, 95

reev () , 275

reevfrom () , 275, 287

recvmsg () , 276, 277

registerrpe () , 65, 67, 69

reliability, 9

Remote File Sharing (RFS), 27

remote mounting, 6

Remote Procedure Call, 2, 33, 168

resolver () , 291

REX, 1, 3

RFS, 27

rlogin, 17

rnusers () , 66

routing

issues, 338

routing table interface, 340

tables, 338

user-level policies, 341

RPC, 2, 33, 41

administration, 38

an advanced example, 47

authentication, 86, 89

batching, 82

broadcast, 81

broadcast synopsis, 82

built-in routines, 69

callback procedures, 98

calling side, 75

DES, 89

futures, 101

generating XDR routines, 47

guarantees, 88

introduction, 33

layers, 65

library based services, 66

lower layers, 72

miscellaneous features, 80

select () , 80

server side, 73

simplified interface, 67

The Highest Layer, 65

The Lowest Layer, 66

The Middle Layer, 65

The Simplified Layer, 65

versions on client side, 94

versions on server side, 92

RPC library based services, 66

RPC Programming Guide, 65

350 -

Index — Continued

RPC Services, 66

rpcgsun . com, 38

RPC_ANYSOCK, 74

RPC_TIMEDOUT, 82

rpcgen, 41 , 65, 67

broadcast RPC, 56

C-preprocessor, 52

client authentication, 56

client programming, 55

constants, 59

declarations, 59
definitions, 58

dispatch tables, 54

enumerations, 58

local procedures, 42
network types, 53

other operations, 55

programming notes, 53

programs, 61

remote procedures, 42
RPC Language, 58

server programming, 56

special cases, 62

structures, 60

timeout changes, 55

typedef, 59
unions, 60

rpcgen Inetd support, 54

RPCL, 58

rq_clntcred, 88

rq_cred, 87, 88

rq_cred.oa_flavor, 88

rquota, 67

rsh, 17

ruptime, 299

RUSERSPROC_BOOL, 74

RUSERSPROG, 74

RUSERSVERS, 74

RUSERSVERS_SHORT, 92

s
select () , 80, 81, 270, 288, 308

connection, 270

send () , 275

sendmsg () , 276, 277

sendto () , 275, 313

sequenced packet socket, 281

server machines, 1

server process, 2, 33

servers

administration, 8

and clients, 21

connectionless, 299

network services, 1

stateless, 169

setsockopt (),311, 314

SIGCHLD, 306

signal () , 275

signals, 252
and process groups, 305

SIGURG, 275

sigvec () , 275

simplified interface of RPC, 67

SIZE, 77

sizeof () , 113

slave and master, 24

snd, 95

sockaddr, 318

socket

connection queuing, 326

connectionless, 286

creation, 281

data queues, 325

datagram, 281, 286

discarding, 286

failure, 282
flags, 286

ioctl () , 333

non-blocking, 304

options, 314

raw, 281, 341

sequenced packet, 281

state, 324

stream, 280
to protocol interface, 33

1

types, 280

Socket-based IPC, 317

Socket-Based IPC
advanced tutorial, 279

tutorial, 251

SPARC
alignment restrictions, 293

porting, 293

spray, 67

statd, 30

stateful services, 27

stateless servers, 169

statelessness of NFS, 15

Status Monitor, 30, 27

stream connection

accepting, 273

initiating, 272

Internet domain, 266

stream implementation in XDR, 123

stream sockets, 280

streams vs datagrams, 278

Sun-4

alignment restrictions, 293

porting, 293

svc_freeargs () , 78

svc_getargs () , 75, 78

svc_getreqset (), 81

svc_register () , 92

svc_run () , 80, 81, 92

svc_sendreply () , 74

svcerr_noproc (>,74

svcerr_systemerr () , 89

svcerr_weakauth () , 89

svc.tcp_create () , 74, 77

svcudp_create () , 74, 77

SVCXPRT, 74, 75

- 351 -

Index— Continued

T
TCP, 95

telnet, 17

terminals, pseudo, 306

tftp, 17

transparency of NFS, 8, 11

Transport-Level Programming, 187

u
UDP 8K warning, 69

udp_output () , 335

UNIX Authentication, 86

unsigned short, 92

user, 1, 92

y
versions on client side, 94

versions on server side, 92

VFS, 10

virtual file system, 10

inode, 10

w
wildcard address, 309

write () , 83

X
x_destroy () , 123

x_getbytes () , 123

x_getlong(), 124

x_getpostn () , 123

x_inline () , 123

x_putbytes () , 123

x_putlong () , 124

x_setpostn () , 123

XDR
advanced topics, 124

array, fixed length, 136

array, variable length, 137

basic block size, 131

block size, 131

boolean, 133

byte order, 141

canonical standard, 106

constant, 139

data types, 132

data, optional, 140

discriminated union, 138

double-precision floating-point integer, 134

enumeration, 133

fixed-length array, 136

fixed-length opaque data, 135

floating-point integer, 133

futures, 141

hyper integer, 133

integer, 132

integer, double-precision floating point, 134

integer, floating point, 133

integer, hyper, 133

integer, unsigned, 132

XDR, continued

justification, 104

language, 141, 142

library, 107

library primitives, 109

linked lists, 124

memory allocation, 77

memory streams, 121

non-filter primitives, 120

object, 123

opaque data, fixed length, 135

opaque data, variable length, 135

operation directions, 120

optional data, 140

portable data, 106

protocol specification, 131

record (TCP/IP) streams, 121

RFC, 131

RFC status, 131

standard I/O streams, 120

stream access, 120

stream implementation, 123

string, 136

structure, 137

Sun technical notes, 103

system routines, 103

typedef, 139

union, 138

unsigned integer, 132

variable-length array, 137

variable-length data, 142

variable-length opaque data, 135

void, 138

XDR language

notation, 142

syntax, 143, 144

XDR library

arrays, 113

byte arrays, 112

constructed data type filters, 111

discriminated unions, 116

enumeration filters, 111

fixed sized arrays, 116

floating point filters, 110

no data, 111

number filters, 109

opaque data, 115

pointers, 118

strings. 111

XDR structure sizes, 170

xdr_array () , 71, 77, 113

xdr_bytes () , 71, 1 12

xdr_chararrl () , 77

XDR_DECODE, 108, 111, 120

xdr_destroy () , 120

xdr_element (), 113

XDR_ENCODE, 108, 120

XDR_FREE, 111, 120

xdr_getpos (), 120

xdr_long () , 105, 108

xdr_opaque () ,
115

xdr reference () , 118, 1 19

352 -

Index— Continued

xdr_setpos (), 120

xdr_string () , 72, 111, 112

xdrmem_create () , 121

xdrrec_endofrecord () , 122

xdrrec_eof () ,
122

xdrrec_skiprecord () , 122

xdrstdio_create () , 107, 120

Y
ypbind command, 25

ypcat command, 25

ypinit command, 25

ypmake command, 26

yppasswd command, 26

yppasswdd command, 26

yppush command, 25

ypwhich command, 25

ypxfr command, 25

- 353 -

Notes

Notes

Notes

